
Reap the Rewards: Bridging Risk Assessment and Secure
Application Development Practices

Abstract
Integrating cybersecurity requirements into complex systems dur-
ing early design stages is essential for building resilient applica-
tions, but it remains a challenging task for both application owners
and cyber operators. In this paper, we present a model-based sys-
tems engineering (MBSE) framework that supports collaborative,
security-aware design by enabling application owners and cyber
operators to jointly assess and prioritize cybersecurity controls.
First, we introduce a framework for integrating cyber into software
development during the early design stages and provide a scalable
approach to ensure completeness in the allocation of cybersecu-
rity requirements to a system. Central to our approach is REAP, a
lightweight plug-in that performs rapid, RPO/RTO-informed risk
assessments to guide the selection and allocation of security re-
quirements. REAP improves transparency and decision making
by helping stakeholders identify critical controls early, quantify
trade-offs, and ensure system-wide coverage. We evaluated our
framework in a representative network scenario, demonstrating
its ability to provide meaningful security insights while seamlessly
integrating into existing MBSE workflows. Our key contribution
is a usable and measurement-driven method for incorporating cy-
bersecurity into the system design process in a way that is both
scalable and actionable.

CCS Concepts
• Software and its engineering→ Software verification and
validation; Software design techniques; • Security and privacy
→ Software security engineering.

Keywords
Cybersecurity, model-based system engineering, cyber engineering,
secure-by-design, risk assessment
ACM Reference Format:
. 2025. Reap the Rewards: Bridging Risk Assessment and Secure Application
Development Practices. In Proceedings of Computer and Communications

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’25, October 13–17, 2025, Taipei, Taiwan
© 2025 DISTRIBUTION STATEMENT A. Approved for public release. Distribution
is unlimited. This material is based upon work supported by the Dept of the Navy
under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions
or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the Dept of the Navy. © 2025 Massachusetts Institute
of Technology. Delivered to the U.S. Government with Unlimited Rights, as defined in
DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice,
U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS
252.227-7014 as detailed above. Use of this work other than as specifically authorized
by the U.S. Government may violate any copyrights that exist in this work.. Publication
rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

Security (CCS ’25). ACM, New York, NY, USA, 12 pages. https://doi.org/
XXXXXXX.XXXXXXX

I Introduction
As computer systems become more complex, ensuring robust se-
curity and availability is a fundamental requirement for industries
such as healthcare, energy, finance, and national defense. Cyberse-
curity threats pose significant risks to operational continuity and
sensitive data, underscoring the need to incorporate security dur-
ing the software development process. When outages occur, it is
extremely costly: in the Colonial pipeline ransomware attack, the
requested ransom was $4.3 million [13] and the Crowdstrike outage
resulted in losses estimated between $300 million and $1 billion [1].

There are a multitude of frameworks and methodologies that
application owners use to address these concerns. A popular frame-
work is the Risk Management Framework (RMF), published by NIST
[2], which guides users in selecting, implementing, evaluating and
monitoring security controls. In healthcare, there are regulations
like HIPAA that require healthcare applications to meet specific
requirements which include, but are not limited to, fully functional
cross-region backups and the encryption of data at rest. More gener-
ally, application owners create business continuity plans (BCPs) for
their applications, which are used to plan a rapid recovery from dis-
asters such as cyberattacks on critical applications. In these BCPs,
a Recovery Time Objective (RTO), the maximum amount of time it
should take to restore normal operations after a data loss or outage,
and a Recovery Point Objective (RPO), the maximum amount of
data an organization can accept losing, are defined, which shape
the security requirements and controls system and cyber engineers
need to add to these applications. There are a number of ways that
system and cyber engineers can proactively combat cyberattacks,
such as adhering to the software development practice known as
secure-by-design, which requires developers to follow secure prac-
tices throughout the development lifecycle, instead of exclusively
relying on reactive approaches such as sending out patches, to meet
RTO and RPO objectives[7][9][14]. However, it is often unclear
to these engineers and application owners whether or not their
proposed security requirements and controls actually meet their
RTO and RPO objectives.

One reason why it is often difficult to determine whether a sys-
tem meets the RTO and RPO objectives is the communication gap
between system engineers and cybersecurity engineers that makes
it difficult not only to determine what security requirements are
necessary for the system, but also to implement security controls
on a system effectively. System engineers frequently struggle to
understand how security controls will affect system performance,
while cybersecurity engineers are often stuck trying to understand
all the system’s use cases and critical operations in order to deter-
mine what security requirements and subsequently controls are
sufficient. Documentation of existing systems can also often be

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

CCS ’25, October 13–17, 2025, Taipei, Taiwan

difficult to understand, incomplete, or in dispute, as system en-
gineers may have a hard time understanding how all the pieces
of a massive, interconnected system fit together. To make it eas-
ier for both system and cyber engineers to document their work,
communicate about requirements and how to implement them,
and verify that requirements enable meeting specified RTO and
RPO objectives, we borrow an approach from system engineers
called Model Based Systems Engineering (MBSE). Unlike traditional
documentation-centric methods, MBSE integrates and visualizes
system components and their interactions into a version-controlled,
shared, and unified model that can be viewed in multiple ways by
the various stakeholders. The model reflects the current state of
development and provides one central repository for all system
information. As information is centrally managed, the model ele-
ments are interconnected, allowing automatic propagation of design
changes, consistency checks, and error checks [10]. MagicDraw is
an MBSE tool that enables the creation, analysis, and validation of
system models to support complex system design and documenta-
tion. Despite MagicDraw’s popularity with system engineers for
designing cyber-physical systems, it is not commonly used to build
secure software systems. Therefore, we leverage MagicDraw to
create an MBSE plugin that would help fix this gap.

In this paper, we describe a framework that fits within an MBSE
model to systematically improve and ease communication between
cyber and system engineers, making it easier to design an archi-
tecture that is more "secure-by-design". By giving both parties a
clear and intuitive way of understanding each other’s problems
and priorities, we can ease the process of crafting security require-
ments, specifying implementation details for security controls, and
verifying their effectiveness through tests. Furthermore, all these
tasks can easily be done using MBSE software, which has the added
benefit of providing traceability - anyone looking at the model can
easily trace a diagram detailing control flow for a security control to
the requirement that necessitated it and to its tests for verification
- and making explicit ties between security controls and system
use cases. Verification tests are also intended to be used to ensure
that the system meets specified RTO and RPO objectives, which
the system and cyber engineers can communicate to application
owners.

The overall framework for integrating cyber into MBSE is made
in two parts. First, we discuss a Test-Driven Cyber Integration
methodology, which allows application owners to ensure complete-
ness in allocating cyber requirements for their system, as well as the
ability to verify integration of secure technologies satisfying those
cyber requirements. As the complexity of the system increases,
so does the scope and volume of cybersecurity requirements. To
support early-stage decision-making, we introduce the Risk Evalu-
ation Assessment Plugin (REAP), a MagicDraw plugin that helps
application owners perform rapid cyber risk assessments within
their existing MBSE workflows. REAP enables users to explore
the effectiveness of different combinations of security controls by
simulating adversary behavior including lateral movement and
system compromise and evaluating the resulting impact on RTO
and RPO. By presenting actionable insights into which controls
are most critical for resilience, REAP facilitates more informed and
measurable security design decisions during system development.
The contributions for this paper are as follows:

• A scalable method to assure completeness in allocating cyber
requirements to a system

• A systems engineering approach for testing that cyber func-
tionality satisfies requirements

• An initial method for dynamically assessing the cyber risk
of the system as designs change, enabling system developers
to better understand which security controls are crucial for
meeting RTO and RPO objectives

• MBSE profiles and plugin, which aid the system engineer in
performing the above

The rest of this paper reads as follows. In Section II, we discuss
related works. In Section III, we discuss how to apply MBSE to
software development so that application owners can build security
into their applications. Next in Section IV, we discuss how to deter-
mine which security controls to prioritize. In Section V we discuss
the MagicDraw plugin REAP, its design choices, and experiments
on an example computer network with various security settings
that can help system and cyber engineers and application owners
understand the relationship between their security settings and the
risks of adversary infiltration and data loss, allowing them to make
informed decisions about which security settings to prioritize for
their system. Finally, in Section VI, we conclude the paper and offer
directions for further work.

II Related Work
A popular prior approach to integrate cyber with MBSE is that of
SysML-Sec [3], which was developed for the design and develop-
ment of secure embedded systems. The SysML-Sec approach has
three phases: system analysis, software development, and valida-
tion. In stage 1, users co-design security and functional architec-
ture, identify security concerns, and perform a risk analysis. Our
approach differs in that it focuses on the effect of an adversary hack-
ing into the system, rather than on targeting specific vulnerabilities.
SysML-Sec models attacks using attack trees, but this approach
becomes cumbersome when taking into account lateral movement;
in contrast, our approach makes it easy to take into account an
adversary chaining together multiple exploits. In stage 2, SysML-
Sec asks users to make security requirements more precise and
verify they’re satisfied by the system design. Stage 3 uses formal
methods to verify the confidentiality and authenticity properties.
Our approach does not use formal methods; instead, our pipeline
requires cyber and system engineers to specify functional tests for
their security controls to verify their effectiveness. We touch on
more about how we could integrate a formal methods approach in
Section VI, when we offer directions for future work.

In [9], the authors propose an MBSE method that enables sys-
tems engineers and cyber security experts to start to incorporate
threat mitigation strategies in the initial design phase. Where our
approach differs from theirs is, again, our focus on the effect of
an adversary hacking into the system, rather than on targeting
specific vulnerabilities. This approach also asks developers to line
up all the exploits needed to carry out the attack in order to map
the threat to system architecture, whereas our approach allows us
to model an adversary taking all possible routes through a network,
as adversaries are likely to try multiple routes through a computer
network in order to reach their goal.

Reap the Rewards: Bridging Risk Assessment and Secure Application Development Practices CCS ’25, October 13–17, 2025, Taipei, Taiwan

In [8], the authors provide a method for modeling the propaga-
tion of failure through a system in the context of a Failure Modes
and Effects Analysis, which is a structured method for identifying
and addressing potential failure points before they occur. Their
method is automated and provides results beyond the usual Failure
Modes and Effects Analysis that helps support not just safety and
reliability but also cybersecurity issues. They also provide a plug-in.
Similarly to our approach, the authors consider all possible paths
along which failure (used by the authors to refer to both failures
and cyberattacks) can propagate. Where our approach differs from
theirs is the amount of work needed to create the necessary models
and metamodels before beginning the analysis. In their approach,
the authors require that users create a metamodel that defines,
among other things, what types of system components have fail-
ures, how these failures can propagate and transform, among other
things. From there, users must add quite a bit of information to
the block definition diagrams used to describe system architecture,
for example, every possible input to a device that could lead to
failure (two of the components in their example system both have
nine different malicious inputs specified) and how every possible
malicious output from one component could lead to a malicious
input in a different component. REAP requires less work from the
user: users need only specify potential methods of access for the
components in their system, and REAP will model how malicious
outputs from one component become malicious inputs to another.

In [5], the authors present an MBSE plugin specifically for cloud
security architecture design. Their plugin, Security Pattern Syn-
thesis, is designed to automate the Threat Analysis and Risk As-
sessment (TARA) process within cloud architecture design, and all
its security recommendations are specific to cloud architectures
only and no on-premise architectures. REAP, on the other hand,
is designed to be generalizable to any system that can be modeled
using MBSE software.

Finally, there have been several efforts to model the spread of
computer viruses through a network similar to the way mathemati-
cians and biologists model the spread of disease through a network,
which is howwemodeled lateral movement when developing REAP
[4][11][6]. One key difference between our work and that of the
aforementioned authors is that they focus on understanding under
what conditions the system reaches equilibrium in the long term (no
device changes from being compromised to uncompromised or vice
versa), while our work focuses on understanding which devices
either switch between being compromised and uncompromised
over time or stay compromised the entire time.

III Test-Driven Cyber Methodology in MBSE
As mentioned earlier, MBSE is a popular choice for collating a plat-
form’s use cases, requirements, and parameters of success into a
single cohesive model for a wide variety of stakeholders like soft-
ware engineers and cyber engineers. MBSE approaches have shown
success for tracing functional requirements to systems, but the
cyber domain is underexplored in part due to a fundamental com-
munication gap between systems engineers and cyber engineers.

It has been established that overall integration costs decrease
when considering cyber security during the design phase of a sys-
tem, a practice commonly referred to as secure by design [15].

However, there are still challenges during the design phase when it
comes to defining cyber threats, mapping threats to system compo-
nents, and applying cyber security mitigation strategies, especially
in a way that keeps all stakeholders in agreement and coordina-
tion. To address these concerns, this section will discuss an overall
methodology for addressing cyber security during system design us-
ing modern MBSE approaches. The end result of this methodology
is to develop the derived cyber requirements as well as functional
and integration tests for cyber technologies. We develop these tests
so that we can verify the cyber requirements and develop these
cyber requirements to establish overall security properties that can
be proven correct about the system.

Secure-by-design is certainly not a new concept, nor is trying to
use MBSE practices to do so, as can be shown in plenty of works
[7][9][14]. This paper is not trying to reinvent secure-by-design
best practices. However, what we note is that (to our knowledge)
there has not been a proposed method that shows a fully traceable
proof of secure design. Our paper is focused primarily on that front,
especially in early-design of the system when defining security is
particularly nebulous.

Defining cyber threats typically involves identifying a specific
vulnerability (e.g., a bug in software running a user account data-
base) and mapping it to an effect that causes harm to the system
(e.g., the bug causes a user’s password to leak). This definition has
the implicit assumption of knowing precise implementation de-
tails about the system, which may not necessarily exist during the
modeling and design phases. Therefore, we intend to focus more
on the latter half: the effect that an adversary can use to cause
harm to the system [15]. For this methodology, a cyber effect has
effectively two parts: how does the adversary get in (i.e., a cyber
kill chain of components) and the cyber-induced failure (i.e., loss
of confidentiality, integrity, or availability in a component).

III.I Example Network and Methods of Access
To produce the cyber kill chain, we need to look at the various
ways an adversary can get into the system. In Figure 2 we have
what is called an internal block diagram, or IBD, that shows the
various methods of access each of our devices on the example
network has (this is the example network on which we will run all
simulations in Section V). For example, a laptop on a network can
be composed of Software (applications and an operating system),
Hardware (workstation and removable media), and Subsystems and
Data Busses (Wi-Fi, Bluetooth, etc.). Depending on the use of that
laptop, it could also have Maintenance and Debrief Data if it is a
maintenance laptop, or Mission Plan and Operations Data if it is
part of the network’s day-to-day operations. These tangible and
intangible components are from the Wheel of Access, which itself
is from the “DoD Cyber Tabletop Guidebook” (shown in Figure 1).

The benefit of utilizing the Wheel of Access in our approach
is that it makes our approach generalizable. Utilizing the Wheel
of Access allows us to focus on particular methods of access an
adversary might use to gain entry into a system component, like
data or voice links, instead of specific threats that are tied to specific
software vulnerabilities or specific pieces of hardware. By keeping
our focus on something more abstract, we can easily use this frame-
work across many different kinds of systems without having to

CCS ’25, October 13–17, 2025, Taipei, Taiwan

Figure 1: Wheel of Access from the “DoD Cyber Tabletop
Guidebook”. “WS” stands for “Weapon System.” System block
diagrams are decomposed into a subset of the components on
the outer ring (e.g., hardware components, data/voice links,
etc.).

list out specific threats for each new system or change the threats
we focus on with changes in implementation details or software
installations. Keeping our focus more high-level rather than fine-
grained also allows us to start thinking about cybersecurity in early
design phases, when implementation details might not exist yet or
are subject to change. It also enables us to focus less on exactly how
an adversary gains access, since that space is theoretically infinite
as threat actors are constantly looking for new ways to gain access,
but more on the fact that they did and what security requirements
could be useful in preventing it.

Figure 2: Example network with systems decomposed into
the Wheel of Access abstractions.

III.II Allocating Security Requirements
System-wide

We represent cyber-induced failures simply by applying cyber prop-
erties to each block definition diagram, or BDD, which is shown in
Figure 3. We use this diagram to clearly lay out how all devices in
the network are connected to each other; we use blocks to represent
the devices, one block per device. We will refer to this diagram and
discuss it in greater detail in Section V when we talk about the role
this diagram plays in REAP simulations. To each block, we add value
properties, which in MBSE are used to specify quantifiable proper-
ties about a particular block, representing Confidentiality, Integrity
and Availability. For our approach, it makes sense to represent Con-
fidentiality, Integrity, and Availability as value properties,since we
will use binary values to indicate their status (i.e. 0 indicating a
failure in the associated cyber property).

Figure 3: Example BDD of the network layout.

To start mitigating against possible cyber effects, our approach
applies security controls to each type of access from the Wheel of
Access. The logic here is that, while it is intractable to claim that a
block component is absolutely secured, we can have a process to
verify that a block has all of the recommended security guidance
applied to it. In this work, we used the Risk Management Frame-
work, or RMF [2], as an example suite of cyber requirements. An
allocation matrix is shown in Figure 4 that shows the allocations of
the RMF controls to the Wheel of Access component abstractions.
The rows in this allocationmatrix represent the RMF controls, while
the columns represent the access methods. The arrows in the cells
indicate that the RMF control in that row is a security requirement
for the particular access method in that column; in other words,
the control has been allocated to that method of access. What falls
out of this allocation is a scalable approach to applying security
requirements to the system.

Reap the Rewards: Bridging Risk Assessment and Secure Application Development Practices CCS ’25, October 13–17, 2025, Taipei, Taiwan

We leveraged the security requirements set out in the RMF to
provide a set of controls for the example network that we analyze
later in this paper. We discuss this in more detail at the end of
the paper, but note that users are not subject to utilizing RMF for
their security controls. Any set of security controls that address the
various methods of access as sufficiently and completely as possible
could work. By allowing for this freedom of choice, users can pick
the sets of security controls most relevant to their systems, increas-
ing the versatility of our framework. We also note that REAP’s
current functionality utilizes RMF controls in its design, but we are
hopeful that in future iterations of REAP we can allow for more
freedom of choice in security controls (more discussion on this in
later sections).

As a system grows in size and complexity, and system developers
add new blocks to represent new devices or change blocks to repre-
sent changes in devices, they will continue to specify for each new
or modified device potential methods of access from the Wheel of
Access. The RMF security controls are automatically applied to the
methods of access, which means they’re automatically applied to
the new devices (since the methods of access are constituent parts
of the device). This automatic allocation happens as a result of the
allocation matrix we created earlier and is what allows us to easily
apply security requirements to our entire system. Our approach is
one that scales well with system growth.

Figure 4: Example allocation of RMF security controls allo-
cated to Wheel of Access abstractions.

With RMF controls automatically allocated to the methods of
access on each block as they are defined, we can ensure that there
is a complete coverage of security controls and requirements ap-
plied to system components. The next step is to verify that these
requirements can be implemented in the system. As shown in Fig-
ure 2, the laptops and server in our example network have all been
given software and hardware components. All of these components
have been allocated RMF Control CM-02 Baseline Configuration
as per Figure 4. This control is partially defined as: “Baseline con-
figurations for systems and system components include connectiv-
ity, operational, and communications aspects of systems. Baseline
configurations are documented, formally reviewed, and agreed-
upon specifications for systems or configuration items within those
systems.” The implementation of a baseline configuration for the
server’s hardware will be a different implementation than that of
the laptop’s software. The way to address this is through unit tests
at the component level. Modern software development commonly
drives toward passing functional tests as it is a scalable and robust
way to ensure the system can pass functional requirements. We
propose integrating system security design into current practices

of a test-driven approach to also meet the security requirements of
the system so that security design also gets these benefits.

Figure 5: Example derived cyber requirements for Laptop 1’s
software components.

A simple example of a cyber test can be shown in Figure 6, which
shows a sample test for Laptop 1. In this case, the test is to verify the
requirement that Laptop 1’s software has a baseline configuration.
The behavior of the test would start with a central authority (“Man-
ager” in the example) that would request the software baseline of
Laptop 1. Laptop 1 would respond with a list of all software and
their version numbers currently installed. The central authority
then compares that list with an approved set of software. If Lap-
top 1’s software maps to the approved software, then the test is
successful and the requirement can be verified.

Figure 6: Example cyber test that verifies the requirement
for Laptop 1’s software to have a baseline configuration.

The benefit of systematically going through this test-driven ap-
proach to security is that it assures (1) completeness in cyber re-
quirements by having system components decompose to a core set
of abstractions, and (2) the requirements can be verified through the
tests in a more systematic way. However, manually going through
this process is tedious and would involve too much added work. The
aid of MBSE allows for easier allocation of security requirements,
integration into the system as components are being defined, and re-
application of security tests when there are similarities. Although

CCS ’25, October 13–17, 2025, Taipei, Taiwan

this approach guarantees completeness, it is unclear for a system
engineer where to begin with the integration and design of security
requirements. The next section will discuss a way to perform a
criticality analysis of components in the system so that a system
engineer can better prioritize which requirements to address first.

IV Cyber Criticality Analysis
With the prior section establishing a means to derive a complete
set of cyber security requirements for a system, the next problem
arises: which requirements should be addressed first? This question
becomes increasingly difficult to answer as the systems grow in size
and complexity. This section aims to start answering that question
by providing a method for comparing how effective different sets of
security controls on different devices are at meeting defined RTO
and RPO goals. It provides a useful, easy alternative to manually
digging through the system model with other system developers
or cyber-engineers weighing different security controls against
each other. As the process is described, we highlight ways in which
MBSE approaches can help streamline this assessment and allow
for dynamic re-assessment as the system design, system use cases,
or threats to the system change throughout the design life cycle.

Our approach to analyzing cyber impact to a networked system
is by modeling the spread of viruses (or adversaries) through the
computer system similar to how mathematicians and biologists
model disease spread through human populations; in Section II we
discussed similar approaches and where ours differ. Whenmodeling
disease spread, it is assumed that each person in the network has
some probability of infecting the people they interact with, so
the disease moves through the network by copying itself from
person to person [12]. In a similar fashion, adversaries create cyber-
kill chains by moving laterally through a system and infecting
a series of components and hosts. By running simulations of a
threat moving laterally throughout the network by jumping from
device to device, we can simulate an adversary chaining together
multiple vulnerabilities, or creating a cyber kill chain, by exploiting
a vulnerability in one device to get to another. In many cases, an
adversary gets access to critical components through vulnerabilities
found in tertiary components, which is not immediately obvious to
the system designer at a glance.

Our work gives users a way of comparing the impacts different
security controls have on their system by providing users data from
simulations of adversaries successfully or unsuccessfully compro-
mising network components, some of which have security controls
and some of which do not, some of which will get patched and some
of which will not, on a level close to day-to-day. By adjusting the
presence of security controls on various components in the system
and the probability of successful patching and comparing the data
between different simulation runs, users can start to make deci-
sions about which security controls to prioritize for their system
and which components to add security controls to. We will provide
an example of six different sets of simulation runs on our example
network, their results, and a discussion of the results in Section V.

V Risk Evaluation Assessment Plugin (REAP)
The analysis approach we take will assume that the probability of
compromise is the same for all types of access from the Wheel of

Access shown in Figure 1; that is, an adversary is not more likely
to choose one method of access over any other. The argument is
that, since the system being analyzed is still in development, it is
infeasible to appropriately weigh one method of system access as
“easier to corrupt” than any other. Once the system has begun its
implementation, a system engineer could modify this methodology
by applying weights based on vulnerability assessments and threat
intelligence as appropriate to increase the efficacy of this approach.

V.I Design Choices
The primary functionality that REAP provides is the ability to run
simulations of a cyber adversary attempting to gain access to the
system and move laterally within it. The core features of these
simulations, which are designed to run over multiple timesteps (for
ease of comprehension, each timestep represents one day), are:

(1) Assigning a probability 𝑝 that the adversary will compromise
any component that currently has not been compromised.

(2) Assigning a probability 𝑞 to model events such as patch
updates or IT kicking adversaries out of certain devices;
compromised devices that recover can become compromised
again. This probability is a parameter that REAP users can
set before the simulation runs start.

(3) Deciding which sets of security controls to implement in
which system components; the more security controls users
add, the more 𝑝 decreases. Users decide which components
have controls, if any, before the simulation runs begin.

(4) Deciding what the RTO and RPO objectives are (for example:
only 1 day of data loss is acceptable, or each component must
recover within 2 days).

(5) Flipping a (potentially weighted) coin at the start of each
timestep (each day) of the simulation to see if any compro-
mise attempt of any component is successful.

(6) Seeing which components have been infected and chang-
ing scope dynamically to emulate lateral movement of an
attacker as they propagate cyber effects throughout the sys-
tem.

We note that there are elements of adversary behavior, recovery
mechanisms, and network topology and features that our model
currently does not capture, as the focus of our analysis is to simu-
late adversaries moving laterally through a network by lining up
exploits and how the addition of security controls and patching
can inhibit that movement. Adding, for example, more complicated
recovery mechanisms that acknowledge how adversaries can still
run exploits even without access to components they previously
compromised adds a layer of complexity that would be interesting
to explore in future iterations of REAP but would detract from
what we want to focus on in this paper and also make it more
difficult to compare the results of different simulation runs. With
these core features in place, we can apply security controls and
requirements to individual component blocks to reduce the proba-
bility that the block becomes compromised. REAP provides users
with data at the end of all simulation runs, which shows which
blocks had what controls and which blocks got compromised and
how quickly, how frequently, and for how long. Each time a block
gets compromised, its data is lost, which will affect the system’s
ability to meet RPO thresholds. We also keep track of how many

Reap the Rewards: Bridging Risk Assessment and Secure Application Development Practices CCS ’25, October 13–17, 2025, Taipei, Taiwan

days blocks are compromised and how many times, which allows
us to determine whether or not our system is able to meet the RTO
objectives. We explain how we produce these metrics in the next
section.

V.II REAP Simulations
One benefit of running simulationswith REAP is that we can change
many aspects of our system – like the probability of successful
patching 𝑞 – and see how our end results change, allowing us
to consider a large variety of threat and recovery models. This
flexibility allows us not only to compare infection rates and duration
in a number of different situations, but also to focus on the impact
threats and security controls have on our system, rather than the
specifics of how a cyber threat or security control works. REAP
makes it easier for application owners to understand why certain
cyber threats are dangerous and to compare how different security
controls can mitigate those threats. The initial functionality of
REAP is to start allowing system engineers to see the immediate
effects cyber security controls and technologies have on the system
design. REAP was built to be modular, so it would be completely
feasible to include more sophisticated threat models and defense
models as the knowledge about the system grows. This paper aimed
to show an initial design of the plug-in.

During simulation runs, REAP keeps track of which devices were
compromised on which day and on which day they recovered (if
at all). At the end of the runs, users will get data on the status of
every device every day, as well as summary statistics regarding the
number of devices compromised, the number of days each of the
devices were compromised, how many times those devices were
patched, whether or not the RTO and RPO objectives are met, and
more. As such, by running simulations under multiple conditions –
from no security controls on any block to every possible security
control on every block, and from low patching success rates to high
success rates – users can use the summary statistics to compare
different sets of security controls on different blocks. These sum-
mary statistics will help users decide which security requirements
and components to prioritize. Since users will also get raw data,
they can also compute their own statistics for further analysis. We
will provide a detailed explanation of exactly how we run these
simulations along with the results of running REAP on the exam-
ple network shown in Figure 3, complete with summary statistics,
later in this section. On the right, we have a block defined for our
network as a whole, and immediately to the left, we have 1 block
for each of the devices that constitute our network: Laptops 1, 2,
and 3 and the server.

REAP uses BDDs to build a graph so we can run simulations. We
think of each block diagram as a directed graph, where each device
is a node, and an edge from device A to B means that A can talk
to B. In our example model, the server and three laptops all have
edges pointing toward the network node, and there are also edges
pointing from the network to each device, as we assume all these
devices can talk to the network and vice versa.

For the probability 𝑝 that any individual device gets compro-
mised, the presence of security controls is the only factor that can
decrease it. Currently, each device has three possible sets of security
controls that the user can implement. For every set applied to the

device, 𝑝 decreases by 80%. We note that these numbers are not
based on actual data; see Subsection V.IV as well as the discussion
section for more details.

Once we have this directed graph, we can begin our analysis.
As mentioned previously, each simulation run consists of multi-
ple timesteps (for ease of comprehension, we imagine that each
timestep is analogous to a day); the idea is that on each day the
adversary will attempt to compromise all nodes to which the cur-
rently connected to compromised nodes with probability 𝑝 . As an
example, if Laptop 1 is compromised, then the adversary will at-
tempt to compromise Network. If the node that the adversary is
trying to compromise has no security controls, the probability of
successful compromise is 𝑝 ; if the node has security controls, then
the probability is less than 𝑝 . This phenomenon models the adver-
sary crawling through the network: an adversary cannot see the
whole network, they can only see the neighbors of the device they
are currently compromising, and they use this information to move
through the network. As the adversary can only see neighbors,
REAP adjusts the scope of what nodes the adversary can access
based on what node it is currently compromising (if the adversary
was compromising Laptop 1 its scope would be limited to just Net-
work, but if’s currently compromising Network its scope would
be all remaining devices). The nodes in our network the adver-
sary successfully compromises are known as infected nodes while
all remaining uncompromised nodes are called susceptible nodes.
Each infected node has the same fixed probability 𝑞 of recovering
(that is, a system administrator applies a patch that fixes a known
vulnerability) and immediately transitions back to the susceptible
group (where an adversary can compromise it again). This model
of nodes moving between susceptible and infected is known as the
Susceptible-Infected-Susceptible (SIS) model [12].

V.III REAP Inputs
Before we begin running simulations, we first specify the entry
points for the adversary: which devices can get infected on day
0? The user can choose any number of devices to be entry points.
The user also specifies the number of timesteps (days) to run the
simulation for and how many instances of those simulation runs
they want (for example, a user could specify 10 instances of 100
days each, which we interpret as allowing an adversary to run amok
in our system for 100 days, ten separate times). We also specify
the value for 𝑞 and how many RMF controls we want to apply to
our system and on which devices. Lastly, we set the RTO and RPO
thresholds (max number of days to return to service and maximum
acceptable data loss) and data backup frequency (for example, once
every day, once every 10 days, etc.). We note that every time a
device is compromised, its data isn’t backed up, and so the count of
how many days of data loss that device suffers from begins there -
if a device remains compromised for 12 days, recovers for 29, and
then is compromised for another 10 days, REAP records its total
amount of data loss as 12 + 10 = 22 days’ worth. REAP provides a
GUI that allows users to specify the values of these parameters.

We began each simulation on day 0 where each entry point
specified by the user has probability 𝑝 (if it has no security controls)
or probability less than 𝑝 (if it has security controls) of starting off
infected (recall that for every set of security controls applied to

CCS ’25, October 13–17, 2025, Taipei, Taiwan

a component, its probability of infection 𝑝 gets multiplied by 0.2
since each set of controls leads to an 80% reduction). From there,
what happens on subsequent days is the same as with the SIS model
of disease spread that we described earlier: each infected device
will try to infect other susceptible devices with probability 𝑝 or less
than 𝑝 . For all experiments, we used REAP on an example network
model shown in Figure 3.

V.IV Sensitivity Testing and Risk Measurement
We will discuss each round of simulation results separately and
provide the rationale for how we chose the inputs for each.

V.IV.I Round 1 of Experiments. In Table 1 we have provided a
list of all inputs used for the first round of experiments that we
performed. These input values were chosen to test a wide range
of input values and are not based on any actual threat or recovery
models; as in early design phases with limited implementation
details or specifications, it is infeasible to accurately estimate, for
example, how successful patching could be.

The first three batches were used to simulate a wide variety of
patching efficacy rates; the middle three were used to compare the
effects of varying how many sets of security controls we add to
our system, while applying it uniformly to all devices; and the last
was to see how infection rates and our ability to stay below RTO
and RPO thresholds are affected when we only give some devices
security controls. For all 9 experiments, 𝑝 = 0.5, Laptop 1 was the
sole entry point, there were 30 runs of 300 days each, RPO = 20,
RTO = 10, and the data backup frequency was once every 10 days.

We set the value of 𝑝 = 0.5 for all these experiments so that
we could test out a wider range of patching success rates 𝑞 in the
hopes that each value of 𝑞 would provide different results: if 𝑝
was closer to 1, then there would probably not have been much
difference between 𝑞 = 0.3 and 𝑞 = 0.5. Similarly, if 𝑝 were closer
to 0, then there would probably not have been much difference
between 𝑞 = 0.5 and 𝑞 = 0.8. Setting 𝑝 at 0.5 makes it easier for us
to have one value of 𝑞 much higher than 𝑝 (modeling the scenario
in which we are able to successfully kick the adversary out of our
system frequently), one value of 𝑞 where they’re equal (modeling
the scenario in which our patching success rate is not as effective),
and one value of 𝑞 much smaller than 𝑝 (modeling the scenario in
which our patching success rate is low enough that it might not be
effective at all). In future work, we would ideally base 𝑝 on actual
data or test a much wider range of values. We acknowledge that
only testing one value of 𝑝 limits adversary behavior, which limits
the generalizability of our results.

As mentioned in the previous section, every time we add a set of
security controls to a block, its probability of compromise decreases
by 80%. This specific value was chosen to reflect how stringent and
comprehensive RMF controls are and is not based on actual data.
Trying to quantify and subsequently measure how much cyber risk
decreases with the presence of security controls is an area of active
research.

It is beyond the scope of this paper to determine appropriate
input values. We encourage REAP users to consider threat and
recovery models that make sense for their systems and also note
that as system-specific implementation details emerge, they can
also use that information when setting parameter values. REAP is

Table 1: Table of initial experiments done, 𝑝 = 0.50, Laptop 1
is sole entry point, 30 runs of 300 days each, RPO = 20, RTO
= 10, Backup freq = 10

Scenario q Sec Ctrls Device w/Ctrls
Default 0.50 0 None
Best Patch 0.80 0 None
Worst Patch 0.20 0 None
1 Set 0.50 1 All
2 Sets 0.50 2 All
3 Sets 0.50 3 All
3 Sets, Entry 0.50 3 Laptop 1
3 Sets, Critical 0.50 3 Network
3 Sets, Both 0.50 3 Laptop 1 and Network

designed to allow for a wide range of possible assumptions that a
user would employ in setting parameter values.

Now we will discuss some results for this initial set of 9 experi-
ments. Table 2 contains the average recovery time and the average
number of days of data loss for the four experiments that we will
discuss in this subsection. The values highlighted in pink are values
that exceeded thresholds; the values highlighted in light green are
values that stayed below or met thresholds.

In Default, all the devices in our network exceeded both the RTO
and the RPO thresholds at least once during most simulation runs,
with the exception of the entry point Laptop 1, which exceeded the
RTO and RPO thresholds at least once during every simulation run.
In particular, we note that across all 30 simulation runs, Laptop 1
took on average 98.9 days to recover after getting compromised, and
the average of the total number of days of data loss it suffered was
217.8 (Laptop 1 was compromised multiple times per simulation run
with brief recovery periods in between, which is why the average
total data loss is greater than the average recovery time). We note
that even though each device had a 50% chance of being patched
every day, the fact that there were no controls at all meant that every
device also had a 50% chance of being compromised (and thus losing
data) every day. Plus, once a device is compromised, it tries to infect
all of its neighbors every single day that it is compromised, which
means once Laptop 1 is able to successfully infect the Network
block, the adversary now has access to every device for as long as
it is able to successfully infect Network since Network is connected
to all components.

Compare these results to 3 Sets, Entry wherewe added all possible
security controls to the entry point Laptop 1 and none anywhere
else. All other parameter values are the same as in Default; also
recall that for every set of security controls added to a device,
its probability of infection decreases by 80% (or it gets multiplied
by 0.2), so because Laptop 1 has all three sets, its probability of
infection has decreased to 0.5 × (0.2)3 = 0.004. In this experiment,
Laptop 1 was still compromised, but far less frequently and for far
shorter lengths of time. In fact, it met the RTO and RPO thresholds
throughout every simulation run, since on average it only took 1.667
days to recover from being compromised and on average only
suffered 4.4 days of data loss! For Network, it was only compromised
for an average of 0.433 days across all simulation runs and only
suffered an average of 1.4 days of data loss. These two experiments

Reap the Rewards: Bridging Risk Assessment and Secure Application Development Practices CCS ’25, October 13–17, 2025, Taipei, Taiwan

make a strong argument for the value of having security controls
on even one device in a system, even if the success of patching is
only 0.5.

What if, instead of adding security controls to our device, we
decide to simply improve our ability to kick the adversary out of
a device by improving the success rate of our patching? That is
what inspired the experiment Best Patch, where the probability of
successful compromise 𝑝 is 0.5 and the probability of successful
patching 𝑞 is 0.8. However, we can see that Laptop 1 suffers greatly
if we only rely on patching - it takes on average 34.4 days to recover
from compromise and loses an average of 125.9 days of data. Even
though Network fared significantly better, with an average recovery
time of 5 days and an average of 18.2 days of data loss, its averages
are still an order of magnitude larger than Network in the prior
experiment 3 Sets, Entry. We speculate that the reason for the large
discrepancy between Laptop 1 and Network in Best Patch is due
to a design choice we made for REAP: for any device, if it gets
compromised on day 𝑛, we first deploy a patch with probability of
success 𝑞 and then the device tries to infect its neighbors if patching
was unsuccessful (this design choice is modeling the scenario in
which someone notices something strange on their computer and
alerts IT before the adversary is able to infiltrate another device).
So, it is possible that the patch deployment fails, it tries to infect
each of its neighbors with probability 𝑝 , and some number of its
neighbors are infected on day 𝑛 + 1. It is also possible that patching
is successful and that it never gets the chance to try to infect any
neighbors, so none of its neighbors is infected on day 𝑛 + 1. Thus,
because the probability of successful patching 𝑞 is 0.8, it is likely
that there were manymore instances in which Laptop 1 got infected
and recovered on the same day without ever infecting any of its
neighbors than instances where Laptop 1 got infected, failed to
recover, and subsequently tried to infect its neighbor Network.
What this experiment shows us is that patching can be effective in
preventing lateral movement (assuming patches go through before
the adversary is able to infiltrate more devices), but patching is not
particularly effective in preventing the adversary from successfully
compromising entry points.

Lastly, we will consider the case of only applying one set of
security controls to every device. How does that affect the end
results? Examine 1 Set. We can see that compared to having all
security controls just at the entry point and nowhere else (the
experiment 3 Sets, Entry), it takes much longer on average to recover
from the compromise, and it also suffers more days of data loss on
average. However, we note that the difference between Laptop 1
and Network in this experiment is much greater than the difference
between Laptop 1 and Network in 3 Sets, Entry: we can see that
when we have all 3 sets of security controls on just the entry point,
Laptop 1’s average recovery time and amount of data loss is between
three and four times greater than Network’s. However, when we
have 1 set of security controls on all devices, we see that Laptop 1’s
average recovery time and amount of data loss is about ten times
greater than Network’s - which means we saw much less lateral
movement! In 3 Sets, Entry about 25% of the adversary’s attempts
at infiltrating Network after gaining entry through Laptop 1 were
successful, but in 1 Set only about 10% of the adversary’s attempts
at infiltrating Network after gaining entry through Laptop 1 were
successful. Of course, based on these simulation results, 3 Sets,

Table 2: Average Recovery Time (RT) and Total Data Loss
(TDL) Measured in Days

Scenario and Device Avg RT Avg TDL
Default, Laptop 1 98.9 217.8
Default, Network 48.7 109.4
3 Sets, Entry, Laptop 1 1.6 4.4
3 Sets, Entry, Network 0.4 1.4
Best Patch, Laptop 1 34.4 125.9
Best Patch, Network 5.0 18.2
1 Set, Laptop 1 30.56 67.5
1 Set, Network 3.83 6.8

Table 3: Results for 3 Sets, Entry With Different Patching
Success Rates

Scenario Average RT - Laptop 1 Average RT - Network
𝑞 = 0.5 1.6 0.4
𝑞 = 0.4 1.7 1.5
𝑞 = 0.3 2.0 4.2
𝑞 = 0.2 4.1 22.0
𝑞 = 0.1 7.9 160.7
𝑞 = 0.05 21.3 251.8
𝑞 = 0.01 65.0 269.6
𝑞 = 0.0 153.8 297.3

Entry is still preferable to 1 Set, but 1 Set shows the importance of
having security controls at more than just the entry point! It is very
effective in preventing lateral movement.

V.IV.II Round 2 of Experiments. We notice that 3 Sets, Entry with a
patching success rate 𝑞 of 0.5 led to great results (recall that in this
set of experiments, the probability of a successful compromise 𝑝
was also 0.5). What if we had all the security controls on Laptop 1,
kept all other parameters the same, but our patch success rate 𝑞 was
lower than the compromise success rate 𝑝? Do we still stay below
our RTO and RPO thresholds? This question led to our next set
of experiments, where we recreated 3 Sets, Entry with a variety of
values for patching success rates 𝑞, all less than 0.5. The 𝑞−values
we tested can be seen in the first column of Table 3.

We note that the first row of Table 3 shows the results from the
experiment 3 Sets, Entry from Table 1. We added it to this table for
ease of comparison. Although we initially decided to only decrease
the patching success rate 𝑞 in increments of 0.1, after discovering
that 𝑞 = 0.5, 𝑞 = 0.4, 𝑞 = 0.3, 𝑞 = 0.2, and 𝑞 = 0.1 all yielded low
values for the average recovery time for Laptop 1 (we always stayed
below the RTO threshold), we decided to try more values between
0.1 and 0. Note that in all of these experiments, the probability
𝑝 of Laptop 1 getting infected is 0.5 × (0.2)3 = 0.004 while the
probability 𝑝 of Network getting infected is still 0.5 since it has no
security controls.

Notice that for Laptop 1, there is a remarkable jump in the aver-
age recovery time when going from 𝑞 = 0.1 to 𝑞 = 0.05. In fact, the
average recovery time either triples or almost triples every time

CCS ’25, October 13–17, 2025, Taipei, Taiwan

we decrease the value of 𝑞 starting at 𝑞 = 0.1! This seems to be an
inflection point for Laptop 1. Notice that for Network, its inflection
point occurs when going from 𝑞 = 0.3 to 𝑞 = 0.2. It makes sense
that there is an inflection point for both devices - that eventually,
even though Laptop 1 has all three sets of security controls, the
adversary is ultimately able to compromise both devices for an
amount of time that far exceeds what has been deemed acceptable.

The way our model works is that if Laptop 1 and Network are
infected on day 𝑁 , then we first try to deploy a patch to both of
them. If 𝑞 is quite small, then it is possible that the patch only
works for Laptop 1 and not for Network. But later on the same day,
Network will try to infect its neighbors (since it failed to recover) -
which includes Laptop 1! This means that Laptop 1 can recover and
become compromised again on the same day. This phenomenon
explains why, for sufficiently small patching success rates, Laptop
1 and Network just stay infected for long periods of time - they are
constantly reinfecting each other! It also makes sense that Network
suffers from higher recovery times than Laptop 1 much earlier
on (its inflection point comes much earlier, for higher patching
success rates): Network is connected to three other devices, so
suppose Network is infected on day 𝑁 , fails to recover (which,
again, is likely since 𝑞 is small), then infects Laptops 2 and 3. On
day 𝑁 + 1, if Network recovers but at least one of Laptops 2 or 3
don’t, then one of Laptops 2 or 3 can now reinfect Network! In
other words, this constant back and forth between recovering and
getting reinfected happens much more frequently with Network
because it is connected to more devices than Laptop 1! Laptop 1
can only be reinfected by Network.

Further investigation is needed to determine why the inflection
point Laptop 1 is at 𝑞 = 0.05 specifically, while the inflection point
for Network is at 𝑞 = 0.2 specifically.

What these results show us is the importance of patching in
addition to security controls: otherwise, we see a constant cycle of
recover-compromise-recover-compromise as devices reinfect each
other. Security controls are needed to prevent the cycle from ever
occurring in the first place; patching is crucial to breaking this cycle
once it begins!

V.IV.III Round 3 of Experiments. Ideally, a systemwould have a low
RTO value - its maximum allowed recovery time should be as low
as possible, as otherwise a compromised device is online for much
longer and has more time to compromise other devices. For five
of our experiments, 3 Sets, 2 Sets, 1 Set, None, from the first round
and 3 Sets, q = 0.2 from the second round, we decided to investigate
how low we could set RTO thresholds for each experiment and still
have a majority or even all of the simulation runs stay below this
threshold. For example, in 3 Sets we know that Laptop 1’s recovery
times were in 10 days or less for all simulation runs - but how many
simulation runs recovered in 8 or less? Or even 3 or less? These
are the questions we are attempting to answer; see Figure 7 for the
answers to these questions, which we will unpack in this section.

To be clear, we did not rerun the simulations; we simply calcu-
lated, for Laptop 1 in each experiment, what percentage of simula-
tion runs recovered in 10 days or less, what percent recovered in 9
days or less, what percent recovered in 8 or less, so and so forth to
what percent recovered in 2 days or less and finally what percent
recovered in 1 day.

We can see for the experiment 3 Sets that if we set the maximum
recovery time to just 1 day, then only in 50% of the simulation
runs did Laptop 1 recover within 1 day. Once we increase it to 5,
however, we see that in well over 95% of the simulation runs Laptop
1 recovered in that time frame - which indicates that at least for
Laptop 1, we could consider lowering the RTO threshold to 5. We
would need to investigate the recovery times for the other devices
in this experiment to consider lowering the RTO threshold for the
entire system.

For the experiment 2 Sets we see that in only 20% of simulation
runs did Laptop 1 recover within 1 day. If we set RTO to 9, we do
fare quite a bit better - in around 90% of simulation runs Laptop 1
recovered within that time frame. This result makes sense: fewer
security controls means a higher probability 𝑝 of infection on any
given day, which means that if Laptop 1 can stay infected (for 3
Sets and 2 Sets the patching success rate 𝑞 was 0.5) it can infect
its neighbor Network, also with higher probability 𝑝 of infection,
and Network can reinfect Laptop 1 if it stays infected (the recover-
compromise-recover-compromise cycle).

For both 1 Set and 0 Sets, there are no simulation runs that stay
below any of the RTO thresholds (the purple and pink line on the
graph overlap) as shown in Figure 7.

10987654321
0

10

20

30

40

50

60

70

80

90

100

RTO Thresholds in Days

Pe
rc
en
tS

ta
yi
ng

Be
lo
w
Th

re
sh
ol
d

What Percent of Simulations Stay Below Threshold?

3 Sets
2 Sets
1 Set
None

3 Sets and q = 0.2

Figure 7: Plotting RTO Compliance versus RMF Controls

Lastly, consider 3 Sets and q = 0.2. Unlike in 3 Sets and 2 Sets, we
never reach a point where 100% of our simulation runs stay beneath
a certain maximum recovery time - at best, we are slightly above
80%. The lower patch success rate 𝑞 = 0.2 and the fact that only 1
device, the entry point Laptop 1, has security controls means that
whenever Laptop 1 successfully infects the Network, it can easily
reinfect Laptop 1 whenever Laptop 1 recovers, since the Network is
not particularly likely to recover. Also, Network can easily infect its
other neighbors, its other neighbors are less likely to recover and
so they’re more likely to reinfect Network, which can then reinfect
Laptop 1. It is again the recovery-compromise-recover-compromise
cycle.

Reap the Rewards: Bridging Risk Assessment and Secure Application Development Practices CCS ’25, October 13–17, 2025, Taipei, Taiwan

V.V Discussion
Our approach is proposed as groundwork to enable a more seamless
integration of cyber as an engineering practice—especially during
the start of a system design—to better enable the vision of secure
by design. This section will add discussion points to the strengths
and limitations of the current proposed approach:

Better Cyber Requirements - Cyber requirements as presented to
a systems engineer are often opaque and speak more to the aspira-
tions of security properties (i.e., “the system shall have a baseline
configuration”). By driving the requirements down to individual
components, our approach starts to make cyber requirements more
tangible for engineers, without necessarily needing a proficient
background in security. This approach also drives more toward a
complete set of cyber requirements, making it easier to adhere to
frameworks like RMF or meet requirements laid out from govern-
ment regulations such as HIPAA. The derived nature of require-
ments for each component makes for an easier assessment of what
has and has not been addressed.

Provable Security Properties — Addressing cyber requirements in
the form of tests starts to build towards strong assertions of security
properties with provable and repeatable results. A system engineer
can concretely say, for example, “this system maintains integrity
by meeting these access control requirements, and these tests show
proper isolation is occurring.” However, this work currently does
not claim to build requirements into higher-level security properties
through, say, a formal methods approach. Significant work must be
done, ideally with formal proofs, to be able to make strong claims
about specific requirements meeting security properties.

Easier Integration with Cyber Teams - A test-driven approach
produces a natural set of metrics: how many cyber requirements
has the system already met and how many are left to do? How
many verification tests have been passed? These statistics signifi-
cantly ease communication with other development teams (e.g. a
cyber red team) so that they can effectively address the validity
of the test’s assertions (and in the case of the cyber red team, see
if they can exploit security controls that lack verification tests or
unimplemented security controls).

Simple Heuristic Approach for Cyber Risk Assessment - REAP pro-
vides a system engineer with the functionality to get heuristics
and other statistics about the efficacy of security controls in the
system design—making it easier to start prioritizing which security
controls to adopt first. However, work needs to be done to improve
the algorithms and calculations performed in this approach. For
example, an 80% reduction (multiplying 𝑝 by 0.2) in the probability
of compromise after adding security controls is possibly too high
of a reduction, and our simplifications of adversary behavior might
miss key elements of how adversaries actually chain together vul-
nerabilities. By doing more research on how we measure cyber risk
and studying how adversaries have behaved in the past, we can
gain more insight into how to refine our model to more realistically
represent an adversary chaining together vulnerabilities. However,
we note that the threat space is theoretically infinite; adversaries
are always finding new ways of chaining together vulnerabilities to
hack into systems, so our threat models will never fully encapsulate
adversary behavior.

Confirming BCP Requirements - REAP can help confirm if an
application can meet its RPO and RTO requirements. The number
of days compromised should ideally be less than expected RTO,
and if it is not, REAP can help provide insight on how to meet RTO
compliance, as users will know exactly how much they fall short of
meeting said requirements. When it comes to complying with RPO
requirements, since REAP provides results for how many devices
are compromised each day of the simulation, using assumptions
about how frequently data is backed up (say every 20 days), users
can easily compute how many days of data loss the system suffers
in simulation runs.

VI Conclusion and Future Works
In this paper, we address the needs of application owners who man-
age critical applications that require extensive security controls.
We introduced an overall framework for integrating cyber into the
early design phase of a system using MBSE approaches. We first
discussed an approach to assure completeness in allocating cyber
requirements to the system and verifying functionality using a
Test-driven Cyber Integration methodology. We then demonstrated
the Risk Evaluation and Assessment Plugin (REAP) and its ability
to dynamically reassess cyber risk within a system model, helping
prioritize the integration of appropriate cybersecurity functionality.
This framework and tool helps application owners evaluate whether
their design aligns with business continuity planning (BCP) objec-
tives, such as RTO and RPO. In cases where requirements are not
met, REAP’s detailed summary metrics and simulation results pro-
vide actionable guidance, making it easier for application owners
and system developers to identify and implement targeted design
changes that improve system resilience.

There are many avenues for future work when it comes to the
Test-Driven Cyber Integration framework. An actual application
of our framework from the beginning to end of system design is
needed to ensure it does ease communication between cyber en-
gineers and system developers, allow for a complete coverage of
cyber requirements, and lead to a test driven approach towards
cyber. Ideally, testing our framework on a variety of cyber-physical
systems would yield the greatest results. Replacing the cyber re-
quirements from RMF with a different set of cyber requirements -
say ones required by HIPAA - would also be interesting and also
demonstrate the versatility and generalizability of our framework.
Finally, since MBSE currently does not integrate with code, more
work is needed to determine how to smoothly ensure that software
developers are able to effectively use MBSE to build their systems
following secure-by-design best practices.

There are many avenues for future development work on REAP.
Allowing for more choices in what security controls users can apply
to their system in simulation runs beyond what REAP currently of-
fers - the controls suggested by RMF - would allow for much greater
applicability and flexibility, making REAP more versatile and ap-
pealing to a wider audience. Building in more complex attacker and
defender models - for example, the probability of successful patch-
ing 𝑞 could vary depending on which device is getting patched,
there could be multiple patches deployed simultaneously that each
have their own probabilities of success, more security controls could
be added to more devices over time throughout simulation runs

CCS ’25, October 13–17, 2025, Taipei, Taiwan

instead of staying fixed the entire time, allowing multiple adver-
saries to attack the system at once (this scenario could model the
phenomenon of discovering new zero day vulnerabilities), network
topology could change as a function of time (perhaps certain de-
vices could disconnect from the network entirely in response to a
successful compromise of a neighboring device), we could allow for
devices to try to infect their neighbors before we deploy patches.
As mentioned earlier, the values for the compromise success rate 𝑝
and the patching success rate 𝑞 could also be set using real data.

Lastly, we also aim to improve upon REAP by improving the
user experience: in the future, we hope to use tools like Prowler
to automatically set security controls for devices in our network.
We open-sourced REAP 1 so that application owners and cyber
specialists can provide feedback on our work.

References
[1] [n. d.]. A Closer Look: Unveiling the Global Impact of CrowdStrike Event.

https://www.guycarp.com/insights/2024/07/global-outage-with-widespread-
impact.html. Accessed: 2024-12-15.

[2] [n. d.]. Risk Management Framework for Information Systems and Organizations.
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-37r2.pdf. Ac-
cessed: 2025-02-25.

[3] Ludovic Apvrille and Yves Roudier. 2013. SysML-Sec: A SysML Environment for
the Design and Development of Secure Embedded Systems. In APCOSEC 2013.
INCOSE.

[4] Natalia Dakhno, Olga Leshchenko, Yurii Kravchenko, Andriy Dudnik, Olexandr
Trush, and Victor Khankishiev. 2021. Dynamic Model of the Spread of Viruses in
a Computer Network Using Differential Equations. In 2021 IEEE 3rd International
Conference on Advanced Trends in Information Theory (ATIT). IEEE, 111–115.

[5] Yuri Gil Dantas, Vivek Nigam, and Ulrich Schopp. 2024. A Model-Based Systems
Engineering Plugin for Cloud Security Architecture Design. In SN Computer

Science. Springer Nature.
[6] Shao-Ting Ge, Gong-You Tang, Xue Yang, Qi-Lei Xu, Hao Yu, and Pei-Dong

Wang. 2013. Stability analysis of SEIQR model in computer networks. In 2013
25th Chinese Control and Decision Conference (CCDC). IEEE, 2244–2248.

[7] Johannes Geismann, Christopher Gerking, and Eric Bodden. 2018. Towards
ensuring security by design in cyber-physical systems engineering processes. In
Proceedings of the 2018 international conference on software and system process.
123–127.

[8] Myron Hecht and David Baum. 2019. Failure Propagation Modeling in FMEAs
for Reliability, Safety, and Cybersecurity using SysML. In 17th Annual Conference
on Systems Engineering Research. Elsevier, 370–377.

[9] Martin Haug Larsen, Satyanarayana Kokkula, and Gerrit Muller. 2024. A Pro-
posal for Model-Based Systems Engineering Method for Creating Secure Cyber-
Physical Systems. In INCOSE International Symposium, Vol. 34. Wiley Online
Library, 37–52.

[10] Azad M Madni and Michael Sievers. 2018. Model-based systems engineering:
Motivation, current status, and research opportunities. INCOSE 21, 3 (2018),
1725–190.

[11] Swapnita Mohanty, Prasant Kumar Nayak, Arjun Kumar Paul, and Antaryami
Basantia. 2023. SIQTRS e-Epidemic Model: A Comprehensive Framework for
Analyzing and Managing Computer Virus Propagation in Networks. In 2023 OITS
International Conference on Information Technology (OCIT). IEEE, 726–731.

[12] Mark Newman. 2018. Networks. Oxford university press.
[13] Joe R Reeder and Tommy Hall. 2021. Cybersecurity’s pearl harbor moment. The

Cyber Defense Review 6, 3 (2021), 15–40.
[14] Yves Roudier and Ludovic Apvrille. 2015. SysML-Sec: A model driven approach

for designing safe and secure systems. In 2015 3rd International Conference on
Model-Driven Engineering and Software Development (MODELSWARD). IEEE,
655–664.

[15] Michael Vai, David J Whelihan, Benjamin R Nahill, Daniil M Utin, Sean R O’Melia,
and Roger I Khazan. 2016. Secure embedded systems. Lincoln Laboratory Journal
22, 1 (2016), 110–122.

Received 07 April 2025

1https://anonymous.4open.science/r/Reap-E277/README.md

https://www.guycarp.com/insights/2024/07/global-outage-with-widespread-impact.html
https://www.guycarp.com/insights/2024/07/global-outage-with-widespread-impact.html
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-37r2.pdf

	Abstract
	I Introduction
	II Related Work
	III Test-Driven Cyber Methodology in MBSE
	III.I Example Network and Methods of Access
	III.II Allocating Security Requirements System-wide

	IV Cyber Criticality Analysis
	V Risk Evaluation Assessment Plugin (REAP)
	V.I Design Choices
	V.II REAP Simulations
	V.III REAP Inputs
	V.IV Sensitivity Testing and Risk Measurement
	V.V Discussion

	VI Conclusion and Future Works
	References

