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Abstract—As drones increasingly deliver packages in neigh-

borhoods, concerns about collisions arise. One solution is to share

flight paths within a specific zip code, but this compromises

business privacy by revealing delivery routes. For example, it

could disclose which stores send packages to certain addresses. To

avoid exposing path information, we propose using homomorphic

encryption based comparison to compute path intersections. This

allows drones to identify potential collisions without revealing

path and destination details, allowing them to adjust altitude

to avoid crashes. We implemented and tested our approach on

resource-limited virtual machines to mimic the computational

power of drones. Our results demonstrate that our method is

significantly faster and requires less network communication

compared to a garbled circuit-based approach. We also provide

a security analysis of the approach against potential attacks.

Index Terms—drone privacy, homomorphic encryption, drone

navigation

I. INTRODUCTION

Drone technology is rapidly proliferating in various do-
mains, such as aerial surveillance [4], package delivery [2],
and search and rescue operations [3], [14], with many indus-
tries seeing significant advancements. However, data privacy
concerns arise as drones are responsible for more services,
with one particular instance being the usage of delivery
drones. Delivery drones are cost-effective because companies
can reduce the costs associated with delivery drivers, fuel,
and vehicle maintenance. Drones can also bypass ground
traffic and take more direct routes, significantly reducing de-
livery times compared to traditional delivery methods. Finally,
drones can operate outside typical delivery hours, offering
faster and more flexible delivery options for consumers.

However, as more delivery drones are being used, collision
avoidance becomes a serious concern. Traditional collision

*This paper was completed outside of his job responsibilities at Amazon.
The views expressed in this paper are those of the author and do not
necessarily reflect the official policy or position of Amazon.

avoidance mechanisms often involve sharing detailed flight
paths between drones, raising significant privacy concerns.
This information may include specific home addresses, shop-
ping patterns, and other data related to individual privacy.
If the data is compromised, criminals might target specific
homes or businesses for theft or other malicious activities,
as they know when valuable packages are expected to arrive.
Also, it is important to keep this information private between
drones owned by competitors, as leaked delivery data could be
used to gain insight into a company’s supply chain, customer
base, and operational practices, leading to potential business
espionage.

To address the need for privacy, various approaches are
used, such as homomorphic encryption, secure multiparty
computation (MPC) [8], or garbled circuits [12]. Homomor-
phic encryption techniques enable parties to perform compu-
tations on encrypted data without revealing the underlying
information. A garbled circuit is a cryptographic protocol
that is used to securely evaluate a function over encrypted
inputs without revealing it to the parties involved. It involves
converting a Boolean circuit into an encrypted form where
the input, output, and internal wires are encoded in such a
way that only the intended computation can be performed
without leaking any additional information. Li et al. [12] used
garbled circuits to compute whether a collision will occur
with two robots. If a collision is detected, both entities would
randomize their paths to avoid the collision. The MPC based
approach requires a shared grid in which all participating
drones must operate, and the processing time escalates with
increased size or resolution of the grid, creating scalability
issues. Homomorphic encryption approaches, on the other
hand, can be customized to the needs of the application
without needing extra pre-computations. Depending on the
arithmetic operations required, the most efficient homomor-

20
24

 IE
EE

 4
9t

h 
C

on
fe

re
nc

e 
on

 L
oc

al
 C

om
pu

te
r N

et
w

or
ks

 (L
C

N
) |

 9
79

-8
-3

50
3-

88
00

-8
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
LC

N
60

38
5.

20
24

.1
06

39
77

0

Authorized licensed use limited to: New York University. Downloaded on April 04,2025 at 17:35:12 UTC from IEEE Xplore.  Restrictions apply. 



phic implementations can be chosen.
In this paper, using homomorphic encryption, we present

a privacy-preserving drone collision avoidance protocol based
on the line intersection algorithm [9], which is faster than
existing collision avoidance protocols [8] [12] and uses less
network bandwidth. Our protocol assumes that two drones
that have different owners are about to collide. To avoid
over-complicating paths, we assume all paths are in a 2-
dimensional plane. We utilize an intersection algorithm that
operates on encrypted paths using homomorphic encryption,
enabling drones to detect potential collisions without revealing
the full path of the other drone. The drones would start
this protocol once they are within a range that is reasonable
enough to cause a collision. If a collision is going to occur, a
drone will temporarily change its altitude (that is, modifying
the Z coordinate) and return to its default altitude once its path
no longer overlaps with the other drone. We are the first to
offer the encrypted version of the path comparison algorithm
without relying on any pre-computations.

Our approach has other advantages compared to related
work based on our protocol. First, it is an efficient collision
avoidance solution that avoids re-computing a path that could
cause delays [12]. Indeed, evaluation results confirm that we
can gain about 30% latency reduction. Also, unlike [8], since
we assume we are on a 2-dimensional plane, we can use
GPS coordinates as our path, which has the advantage of not
requiring any pre-computed matrices for our protocol to work.

The remainder of the paper is organized as follows. In
the next section, we provide background information in both
homomorphic encryption algorithms and an intersection de-
cision algorithm. Then, Section III discusses related work in
the domain of secure route computation. In Section IV, we
establish our assumptions, system design, and threat model.
Section V discusses our experiment results. Finally, Section
VI concludes the paper.

II. RELATED WORK

Privacy-preserving collision avoidance has started to receive
some recent attention in various contexts. For example, Li et
al. [12] developed a privacy-preserving multi-robot planning
protocol that would ensure two robots on a floor would
not collide. A garbled circuit is a function represented by
a Boolean circuit with logic gates. Using a two-party MPC
approach, one party is assigned the role of garbler which
generates the garbled circuit, while the other party is called
the evaluator. The inputs of each party are then encrypted, and
the evaluator processes the garbled gates with the garbled (en-
crypted) inputs to compute the garbled output. The evaluator
can then map this garbled output back to the actual output
values using the mapping provided by the garbler [24]. In Li
et al.’s implementation, the output is a Boolean decision on
whether an intersection is present somewhere in the complete
path. It does not provide exact intersection locations.

Sciancalepore et al. [19] introduce Privacy-Preserving Tra-
jectory Matching (PPTM), a protocol that enables UAVs
to discover potential spatial and temporal collisions without
sharing sensitive location and timestamp data with untrusted
entities. PPTM employs a tree-based algorithm called Incre-
mental Capsule Matching and integrates a lightweight privacy-
preserving proximity testing solution for private comparisons.
This approach improves path planning efficiency, reduces
delivery time, and minimizes energy consumption for UAVs.
However, it does not always guarantee accurate solutions. It
trades accuracy and performance.

Finally, Desai et al. [8] propose a secure MPC for trajectory
planning among drones, ensuring collision detection without
disclosing sensitive information. It uses matrix representation
and matrix addition as an approach to compare trajectories,
thus reducing computational complexity and improving per-
formance. The matrix representation involves considering each
path to take place on a discrete grid of the region. Each drone’s
path is represented by a series of continuous cells of value
one, where anyplace the drone will not pass through is given a
value zero. The matrix must be consistent between the drones,
and so must cover the entire area of possible flight, and cannot
handle traffic that is not familiar with the local matrix, such
as a drone from another area.

Compared to the approach of Li et al. [12], our approach
is faster and lighter on network traffic (as will be shown in
Section V), as well as allowing for planning by more than
two drones by allowing for deterministic path changes in the
event of an intersection rather than random movement. Then,
Sciancalepore et al. [19] the most lightweight implementation
of their protocol does have false positives and may not be
trustworthy in applications where safety is critical such as
drone delivery or military surveillance. Finally, compared to
Desai et al. [8], our approach eliminates the need for a discrete
matrix of paths possibilities, instead taking GPS coordinates
as input. This allows for more detailed planning and also bases
computation time solely on the complexity of the path, and not
on the size of the delivery area being considered. In addition,
a drone coming into an area from a far distance could utilize
our method because it does not need to have a common matrix
of possible locations.

III. BACKGROUND

A. Homomorphic Encryption

An Additively Homomorphic Encryption scheme such as
Paillier [16] or DGK [5] [6] [7] allows a user to combine two
ciphertexts to receive the sum of both ciphertexts. Assume
there are two messages a , a 0 in the plaintext space M and
we define the encryption of a as JaK. We use the ‘boxplus’
operator (�) to denote the addition of two ciphertexts such
that upon decryption J(a +a 0)K = JaK � Ja 0K.
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In Paillier [16], we define m as the plaintext message, n is
the product of primes p and q, r is a random number and g
is a parameter of the encryption scheme, as shown in Eq. 1.

JmK = gmrn mod n2 (1)

If you multiply two Paillier ciphertexts, the output would be
an encrypted addition of the plain-text. A Paillier ciphertext
that is exponentiated with a plaintext value would return the
encrypted product of the ciphertext and plaintext as in Eq. 2.

Ja +a 0K = (ga rn)(ga 0 rn) = ga+a 0 r2n

J(a)(a 0)K = (ga rn)a 0 = g(a)(a 0 )r(a
0
)(n)

(2)

However, Paillier does not have an operation where you can
obtain the product of two ciphertexts. However, using a two-
party protocol [23] that takes advantage of the distributive
property of multiplication, we can obtain the product of two
Paillier [16] ciphertexts. In this protocol, we assume that Alice
has JxK and JyK, and generates two random values a and b
to additively blind each encrypted value, respectively. Alice
sends J(x + a)K and J(y + b)K to Bob to decrypt, multiply,
and return the product. Then Alice could use the following
operations to obtain JxyK, as shown in Eq. 3.

JxyK = J(x+a)(y+b)K� J�bxK� J�ayK� J�abK (3)

Finally, another application of homomorphic encryption is
to compare it to encrypted numbers. Assume that there are
two t-bit integers held by party A and party B, which are
represented in binary form, x = Ât�1

i=0 xi2i and y = Ât�1
i=0 yi2i.

The objective of parties A and B, respectively, is to obtain
the protocol bits dA and dB, such that dA�dB = {x y}.

The secure integer comparison problem was first stated in
[26], where two millionaires would like to determine who is
richer without revealing the amount of their wealth. The first
solution to the problem was introduced in [13] and various
more advanced approaches such as the implementation of the
DGK cryptography system and its comparison protocol [5]
[6] [7]. The high communication cost of these comparison
protocols was addressed [21] [22] and finally [11] improved
them to be resistant to timing attacks.

B. Encryption Library

We utilize a Java library implemented by Quijano and
Akkaya [18] [17], which implements the encrypted equality
check [15], multiplication over two homomorphic ciphertexts
[23] and uses the Joye and Salehi encrypted integer compar-
ison protocol [11]. The encrypted integer, multiplication, and
equality check can be used for pairs of Paillier [16] ciphertexts
or DGK ciphertexts [5] [6] [7]. We use these functions to
implement a privacy-preserving version of a line intersection
algorithm [9].

C. Threat Model

We assume Alice and Bob, representing two drones, re-
spectively, to be honest but curious, so we expect both parties
to faithfully follow the encrypted intersection algorithm, but
will attempt to gather as much information as possible from
each other such as path information, destination location, etc.
We also assume that there may be external parties that will
attempt to obtain the path information of the drones.

As an attack, we consider that Alice may attempt to repli-
cate Bobs’ path even if it is encrypted through intersections by
defining her own path as a set of very small line segments that
cover an entire area to a resolution that will give her Bob’s
path information, as well as a close replica of a complete path.

IV. PROPOSED APPROACH

A. System Model and Scenario Overview

In our scenario, we assume the two drones that are engaging
with each other through our protocol to be owned by different
companies, e.g., Amazon and UPS. In this scenario, Alice is a
drone about to take off, and Bob is either in flight or also ready
for take-off. We consider a specific timeframe where Alice can
send a request for paths of any other drones that are or will
be flying in a neighborhood along with its speed. This would
require communication between drones at longer distances
than local area networks (e.g. WiFi-like ranges). This can be
achieved by employing protocols such as 5G NB IoT [20] or
LoRa [25]. This neighborhood should be much larger than the
area covered during the flight to cover all drones that could
come into the flight area during flight time. Bob, which is or
will be flying in the area Alice is broadcasting to, responds.
Note that we expect these drones to have different starting
and delivery locations. Thus, it would be unlikely that the
same pair of drones would possibly collide multiple times in
an honest path. However, we assume that all drones have a
default altitude enforced by regulations

B. Encrypted Comparison of Paths

We rely on homomorphic encryption to be able to compare
the paths of two drones without exposing any information to
each other regarding the path including any intersection point.
In this approach, Bob has a key pair and a route composed of
an arbitrary number of line segments. Alice also has a route
composed of an arbitrary number of line segments. A sample
route along with their line segments is shown in Fig. 1.

Fig. 1: A Path is compromised of an arbitrary number of lines
segments, e.g. (A, B), (B, C), (C, D), (D, E)
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Both Alice and Bob will follow the steps below to run our
approach, as also shown in Fig. 2:

1) Bob will encrypt his route using his own public key and
await a connection from Alice.

2) Upon connection to Alice, Bob sends his public key and
encrypted route to Alice.

3) Alice then uses Bobs public key to encrypt her route,
and they both complete an encrypted version of the route
using Algorithm 2.

Fig. 2: Protocol for two drones to determine which intersec-
tions there might be collisions to avoid.

Once the algorithm ends, Alice knows which of her line
segments on her path will collide with Bob. As Bob’s path is
encrypted, no other information is available to Alice. Bob does
not receive the results of the comparisons and, if he wishes
to obtain the same information, the protocol needs to be run
again with the roles switched. However, this is not necessary,
as it would be assumed that Alice would change altitude to
avoid colliding with Bob.

Algorithm 1 Drone behavior in flight
Input: Protocol-Initiation-Range

1: while In Flight do

2: if Another drone is in Protocol-Initiation-Range then

3: Determine which Drone is Alice and Bob
4: Segments  Encrypted version of Algorithm 2
5: for Segment in Path do

6: if Collision occurs at Segment i then

7: Alice adjusts altitude

8: else

9: Return to default altitude
10: end if

11: end for

12: else

13: return continue

14: end if

15: end while

C. Computing Intersections

The line segment intersection algorithm [9] (that is, Algo-
rithm 2) we use is based on the concept of orientation of

an ordered triplet. There are three possible orientations for
any ordered triplet of points: clockwise, counterclockwise, or
collinear. To demonstrate this, we used the points (A, B, C),
shown in their three possible orientations in Figure 3.

Fig. 3: Three cases of orientation for points A, B, and C.

Assume that we have two line segments (A , B) and (C, D)
that intersect, there are two cases that would occur.

In the general case, where two line segments intersect,
(A, B, C) and (A, B, D) have different orientations and the
orientations of (C, D, A) and (C, D, B) are also different. In the
other case, if all line segments are collinear, they intersect if
their x-projection and y-projections overlap. The pseudocode
to find the orientation of an ordered triplet (A,B,C) composed
of points (Ax,Ay), (Bx,By), and (Cx,Cy), where the subscript
identifies the plane of projection.

To handle the case that two segments are collinear, we
check if any of the four points is located in the other segment.

We can compose a routine that will decide whether two line
segments (A, B) and (C, D) intersect. The pseudocode for this
is provided in Algorithm 2.

Algorithm 2 Line Segment Intersection Algorithm [9]
O1 = Orientation(A,B,C)
O2 = Orientation(A,B,D)

3: O3 = Orientation(C,D,A)
O4 = Orientation(C,D,B)
if O1 6= 02 ^O3 6= 04 then

6: return True

end if

if O1, O2, O3, O4 are all Collinear then

9: if A is on segment (C,D) _
B is on segment (C,D) _
C is on segment (A,B) _

12: D is on segment (A,B) _ then

return True

else

15: return False

end if

end if

D. Security Considerations
Since the paths are encrypted, neither Alice nor Bob and no

other third party can decrypt any information collected from
the wireless broadcasts.
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Now, let us assume Alice will be logging the results of
the collision for each line segment in her path with Bob in an
attempt to reverse engineer Bob’s path. If there is no collision,
privacy is preserved. If there is only one collision, Alice would
know that one line segment would intersect with Bob. Since
there is no time information, Alice would not be able to
determine where in the line segment Bob would collide, or
Bob’s speed or direction.

During the engagement with Bob, should Alice decide to
run the intersection protocol repeatedly against a series of
closely spaced parallel lines composed of short segments, as
shown in Figure 4, she could compose an approximation of
Bob’s path through the intersections she discovers.

Fig. 4: The red path is the path of an Alice drone attempting
to brute force, the blue path of a Bob drone.

The first mitigation of this attack is that, based on our
assumptions in Section III-C, the drones would have different
starting points, so realistically it would still be difficult for
Alice to randomly find Bob to attempt this sort of path. This
attack also does not factor in that an Alice drone attempting
this brute-force approach could just as easily miss fast-moving
Bob drones [10] that came too early or too late within the long
parallel line segments. This attack requires Alice and Bob to
be within range of each other and to talk to each other for a
very long time, which is not possible. Finally, drones also have
a very limited range [1], so if Alice wanted to complete both
her delivery and try this task, it would be risky, as the drone
increases its risk of running out of energy before returning to
its refueling station.

V. PERFORMANCE RESULTS

A. Experiment Setup
We implemented our protocol entirely in Java and used a

homomorphic encryption library implemented in Java [18]
[17]. We open-sourced the code we used to implement our
collision avoidance algorithm1.

We considered the following metrics to access performance:
• Execution Time: This is the time for computing if an

intersection would occur between two line segments
• Network Traffic: We count the number of bytes that both

Alice and Bob write to a socket during the protocols.
Thirty random x-y plane line segments with values from -99 to
99 were generated because [12] does not provide intersection

1https://github.com/adwise-fiu/homomorphic-path-comparison

locations. To fairly compare speed, we used single segments,
so both protocols returned the same result: a boolean decision
on the existence of an intersection. The experiment was
completed on a pair of Debian 12 virtual machines with 2
CPUs and 4 GB of RAM, which were chosen to emulate the
resources of a Raspberry Pi 42. We calculated the average
time and network traffic size for each comparison based on
these 30 trials.

B. Experimental Results
1) Comparison with Li et al.: When comparing our work

with Li et al. [12], we both used 2048-bit keys. The results
in Table I indicate that our approach is 30% faster and sends
less data over the network compared to Li et al. [12]. This
is because of the efficiency of the comparison operation
in DGK. In contrast, MPC-based approaches require a lot
of communications and computation to perform comparison
operations. The dominating nature of comparison operations
in path comparison shows that any time savings should focus
on this operation, and use of our approach supports this
observation. The gains will even improve with an increase
in the number of segments for a given path comparison since
only a single segment is focused on average.

TABLE I: Comparing the computation time and bytes sent
over a network with [12].

Approach Time (seconds) Network traffic (bytes)

Our Approach 4.407s 4634
Li et al. [12] 6.092s 39221

The improvements in speed and network traffic means that
our approach would be scalable for multiple pairs of drones
to compare their paths within a certain airspace. Our protocol
would have the edge if used in networks where bandwidth is
limited, such as using LoRa.

2) Comparison with Desai et al.: We also performed an
experiment to compare our approach with Desai et al. We used
two Raspberry Pi 4s to have a fair comparison (as done in that
work). We obtained an average run-time of 16.531 seconds,
which is faster than Dessai et al. [8] taking 30 seconds for a
matrix of size 96 and using a secret share size of 64 bits.

It is important to understand that the speed of our approach
and that of Dessai et al. [8] vary based on different parameters.
Route complexity does not change the speed of Dessai et
al.’s [8] approach as it does ours, but the area and resolution
considered for route comparisons does. But a matrix size of 96
is very limiting when we consider realistic drone flight areas,
and Desai et al. [8] computation time scales exponentially
with increased matrix size.

VI. CONCLUSION AND FUTURE WORK

In this paper, we implemented a new encrypted intersection
algorithm using Homomorphic encryption, which can be used

2https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
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by two drones owned by separate entities to compute where
they would intersection. Our algorithm is more flexible than
[8] as we can use GPS coordinates as part of our line
segments, meaning more flexibility on where the protocol
could work, as well as not requiring all participating drones
to share a finite possible flight area. Furthermore, the results
of the experiment showed that our algorithm outperforms the
existing approaches. It is faster than both Li et al.’s [12]
collision protocol and Desai et al. MPC protocol and requires
less network bandwidth.

The primary privacy concern, a brute force attack designed
to reconstruct a flight path out of detected collision points,
would take far longer than the flying drone would be in the
air, and would fail due to lost connectivity between the drones.
The large difference in computation time between an honest
path and a brute-force attack also leaves open the possibility
of stopping the attack based on assumptions about time and
resources used in an honest implementation.

The aforementioned use of GPS coordinates as input allows
for the potential for our approach to be used in-flight in real-
time, as opposed to route planning. Using this approach in this
way is currently limited by computation time, but as drones
increase in computation power and wireless networks increase
in bandwidth, it is possible that this approach be used in an
in-flight scenario.
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