
Enhanced Outsourced and Secure Inference for Tall
Sparse Decision Trees

Andrew Quijano
Dept. of Computer Science and Engineering

New York University
New York, NY, USA

andrew.quijano@nyu.edu

Spyros T. Halkidis
Dept. of Applied Informatics
University of Macedonia
Thessaloniki, Greece
halkidis@uom.edu.gr

Kevin Gallagher
NOVA LINCS

NOVA School of Science and Technology
Lisbon, Portugal

k.gallagher@fct.unl.pt

Kemal Akkaya
Advanced Wireless and Security Lab
Florida International University

Miami, FL, USA
kakkaya@fiu.edu

Nikolaos Samaras
Dept. of Applied Informatics
University of Macedonia
Thessaloniki, Greece
samaras@uom.edu.gr

Abstract—A decision tree is an easy-to-understand tool that
has been widely used for classification tasks. On the one hand,
due to privacy concerns, there has been an urgent need to
create privacy-preserving classifiers that conceal the user’s input
from the classifier. On the other hand, with the rise of cloud
computing, data owners are keen to reduce risk by outsourcing
their model, but want security guarantees that third parties
cannot steal their decision tree model. To address these issues,
Joye and Salehi introduced a theoretical protocol that efficiently
evaluates decision trees while maintaining privacy by leveraging
their comparison protocol that is resistant to timing attacks.
However, their approach was not only inefficient but also prone
to side-channel attacks. Therefore, in this paper, we propose a
new decision tree inference protocol in which the model is shared
and evaluated among multiple entities. We partition our decision
tree model by each level to be stored in a new entity we refer
to as a "level-site." Utilizing this approach, we were able to gain
improved average run time for classifier evaluation for a non-
complete tree, while also having strong mitigations against side-
channel attacks.

Index Terms—Decision Trees, Encrypted Integer Comparison,
Privacy, Data Mining

I. Introduction
Machine learning is widely used in various real-world appli-

cations, such as managing student data [30], analyzing health
data [16][19], and fraud detection in energy consumption [5].
One type of classifier commonly used in machine learning
is the Decision Tree (DT). A DT is a classifier that consists
of decision nodes and leaves corresponding to an output
class. DT evaluations have the advantage of being a fast and
computationally inexpensive solution compared to other ML
techniques. Also, a DT model is easy to audit as decisions are
made through tree traversal.

However, as machine learning techniques begin to analyze
sensitive data, such as medical records, privacy concerns arise.

∗This paper was completed outside his job responsibilities at Amazon. The
views expressed in this paper are those of the author and do not necessarily
reflect the official policy or position of Amazon.

Privacy is becoming an important issue as there are regulations
such as the Health Insurance Portability and Accountability
Act (HIPAA) in the United States [11] and the General Data
Protection Regulation (GDPR) in the EU [22] that protect
sensitive user data. One potential approach to balance both the
desire to utilize machine learning and maintain a user’s privacy
is to use differential privacy. However, given that differential
privacy relies on the injection of noise into the data set, the
resulting classifier loses accuracy [18]. Instead, we propose
using a privacy-preserving decision tree (PPDT) to achieve
both accuracy and privacy preservation. A PPDT ensures that
the server(s) storing the DT would not have information about
the model leaked to the client, and the server is unaware of
the client’s input or output of the DT model.
Previous work by Joye and Salehi [13] designed a theoretical

PPDT classification protocol that used an encrypted integer
comparison protocol based on Veugen’s [28][29] protocol that
has additional protection against timing attacks. To this end,
they converted a DT model into a complete binary tree,
where all classes are in the bottom level of the tree. This
ensures that every evaluation will have the same number of
encrypted integer comparisons, so using a timing attack to
extract information about the DT is still infeasible.
However, the PPDT model proposed in [13] has some issues.

First, there is a performance loss since the full depth of the
PPDT has to be traversed even if the classification could
be computed earlier. In the case of a sparse DT [12][15],
which is defined as a DT that has few internal nodes, this
implies that most leaves would not be at the maximum depth
of the tree; therefore, Joye and Salehi’s PPDT evaluation
protocol would be inefficient. Also, they used an asymmetric
based comparison based on RSA, which could be susceptible
to power-based side channel attacks [3]. Finally, since the
classification occurs on one server, this server is a single point
of failure. So, to address these concerns, we propose to split the
PPDT model between multiple entities. We call these entities

2024 IEEE International Performance, Computing, and Communications Conference (IPCCC)

979-8-3503-6794-2/24/$31.00 ©2024 IEEE

20
24

 IE
EE

 In
te

rn
at

io
na

l P
er

fo
rm

an
ce

, C
om

pu
tin

g,
 a

nd
 C

om
m

un
ic

at
io

ns
 C

on
fe

re
nc

e
(I

PC
C

C
) |

 9
79

-8
-3

50
3-

67
94

-2
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
IP

C
C

C
59

86
8.

20
24

.1
08

50
19

2

Authorized licensed use limited to: New York University. Downloaded on April 04,2025 at 17:35:29 UTC from IEEE Xplore. Restrictions apply.

level-sites, inspired by the fact that the protocol progresses
level by level, ending as soon as the client reaches a leaf.

In this paper, we extend the theoretical PPDT classification
protocol in [13] to a scenario where the DT model is shared
between the level-sites, which improves our PPDT average
run-time performance (especially for sparse, tall trees) while
also providing robust security protections against side-channel
attacks. To classify client data with our PPDT, a client would
connect to level-site 0, and provide an encrypted feature vector
to classify. Using [13] comparison protocol for numerical data
or a timing attack resistant [20], the level-site 0 calculates the
index in scope for the next level in the PPDT and sends the
index to the level-site 1, etc. This process repeats until a level-
site index is on a leaf and returns the classification to the client.

Assuming that the user’s classification will not always result
in traversing the whole tree, we observed a faster evaluation
time in our experiments, as we have fewer encrypted compar-
isons to compute. Each level-site takes less than 1 second to
complete the encrypted integer comparison and passing the
index to the next level-site. We also show that our approach is
resistant to side channel attacks and to single point of failures
through our decentralized level-site approach.

II. Related Work
There have been several methods proposed for implementing

PPDTs in the literature [27], [4]. Although some of these
methods focus on protecting the confidentiality of training data
[17], [9], other related works, such as [4] and [26], focus on a
secure inference protocol. A secure inference protocol enables
users and model owners to interact so that the user obtains the
prediction result while ensuring that neither party learns any
other information about the user input or the model.

Liu et al. [18] designate Data Owners (DO) as the users
who possess the DT training data, Cloud Service User (CSU)
as a user with data to evaluate in the PPDT, and both
Cloud Service Provider (CSP) and Evaluation Service Provider
(ESP) as distinct cloud providers responsible for training and
evaluating data, respectively. It is worth noting that both the
CSP and the ESP must have knowledge of all the possible
labels and attributes for the DT. They utilize the Distributed
Two Trapdoors Public Key Cryptosystem (DT-PKC), which
is similar to Paillier [21], with the distinction that it allows
comparisons between ciphertexts encrypted by different public
keys. Liu et al. [18] created new protocols to securely count the
frequency of attributes in the data set, and modified Veugen’s
algorithm to be used for DT-PKC [28][29]. Our paper has the
advantage of using 2048-bit keys, which are more secure than
Liu et al. [18] and our PPDT has faster PPDT evaluation times.

Yuan et al. [32] utilize gradient-boosting decision trees
(GBDT) to train DTs. They introduce the privacy-preserving
distributed GBDT (PPD-GBDT), which uses differential pri-
vacy, polynomial approximation, and fully homomorphic en-
cryption to achieve comprehensive privacy protection for their
DT model. The DOs add noise to their local GBDT, and then
convert the model into a polynomial format that is sent to
the CSP. For evaluation, the client encrypts their input and

sends the ciphertext and public key to the CSP. The CSP
would return encrypted results and the client would decrypt the
classification. Our PPDT has generally faster PPDT evaluation
times and no noise is added, which could potentially cause
classification inaccuracies.

III. Preliminaries
A. Background on Homomorphic Encryption
An Additively Homomorphic Encryption scheme [25] such

as Paillier [21] or DGK [6][7][8] allows a user to combine
two ciphertexts to receive a ciphertext output that has the sum
of both input ciphertexts. For example, assume that there are
two messages α, α′ in the plaintext space M. We write an
encryption of α as nαo and use the ‘boxplus’ operator (�)
to denote the addition of two ciphertexts. Then we have that,
after decryption, n(α+α′)o = nαo � nα′o.
We use encryption to securely compare two encrypted

integers. Assume that there are two integers held by A and
B. Suppose that A has the t-bit integer x =

∑t−1
i=0 xi2i in binary

form, while party B has another t-bit integer y =
∑t−1

i=0 yi2
i .

The goal is for A and B, respectively, to obtain the protocol
bits δA and δB, such that δA⊕ δB = 1{x ≤ y}.
The secure integer comparison problem was first stated in

[31], where two millionaires would like to find out who is
richer without revealing the amount of their wealth. Various
more advanced solutions followed in [6][7][8]. The high com-
munication cost of these protocols was addressed by Veugen
[28] and Joye and Salehi [13] improved Veugen’s protocol to
be resistant to timing attacks.

B. System Model
We assume the following entities. A Client has a feature

vector x and wants to classify it using the DT. The client
creates public and private Paillier [21] and DGK [6][7][8]
keys. The client will give the server the public keys. In a
real-world scenario, a client could be a doctor who needs to
know if a patient has thyroid disease. A Server has access to
the training data and creates the DT. The server creates the
PPDT to send to the level-sites. To save network bandwidth,
the server will give the level-sites the public keys. In a real-
world scenario, this could be a laboratory that can inform a
doctor if there is a probable sign of thyroid disease. A Level-
site only has a level of the PPDT and the public keys used to
compare integers with the client. In a real-world scenario, a
level-site would be a cloud provider hosting the PPDT.

C. Threat Model
We assume the server is trusted, but the client and level-

sites are “honest-but-curious” (HBC). The client may attempt
to learn the decision nodes of a DT, which would contain the
feature and a corresponding threshold. We assume that the
level-sites will attempt to learn the client’s feature vector data
and classification output.
We expect the level-sites to strictly follow the protocol of

our designed PPDT. However, we will assume that the level-
sites would be curious to analyze both power consumption and

2024 IEEE International Performance, Computing, and Communications Conference (IPCCC)

Authorized licensed use limited to: New York University. Downloaded on April 04,2025 at 17:35:29 UTC from IEEE Xplore. Restrictions apply.

computation times for potential side-channel attacks [3][2]. We
also consider a passive adversary, A, outside the system in our
model. A’s goal is to learn the client input, the classification
from the PPDT model, and the PPDT model’s thresholds.

IV. PPDT Approach

A. Goals and Overview
We are motivated by the fact that in a tall and sparse

decision tree, most of the leaves in a DT are not at the
maximum depth of the tree. Indeed, we computed the level
of each classification from the training dataset 1 as shown in
Table I. We want to minimize the encrypted comparisons used
to improve our performance for our PPDT in this circumstance.
In addition, if a level-site l fails, we would like the traffic re-
directed to a backup, solving the single point of failure in Joye
and Salehi’s approach [13].

TABLE I
Analysis of level of classifications of Training data

Dataset Average Median 3rd Quartile Max Size
Hypothyroid 2.78 2 2 9 3372
Spambase 9.60 9 11 22 4601
Nursery 5.99 7 8 14 12960

Based on these goals, we set up our PPDT as follows: (i)
The server builds the DT with the training data; (ii) The client
sends to the server the DGK [6][7][8] and Paillier [21] public
key. The server provides the client with both the classes of
the DT; and (iii) For each level 0, 1, · · · , d−1, where d is the
depth of the DT, the server sends the encrypted thresholds
and classifications to the respective level-site.

B. PPDT Inference
In our setting, there is one client and d level-sites, where

d is equivalent to the depth of the DT. The client has a
private feature vector, x = (x1, x2, · · · , xn) ∈ Zn, which is
encrypted using homomorphic encryption to generate nxio,
where i ∈ 1, · · · ,n. We also assume that all thresholds are t-
bits long. Each level site uses the Joye and Salehi encrypted
integer comparison protocol [13] or a timing attack resistant
encrypted equality protocol [20] for categorical data. We note
that in our PPDT, we improve our PPDT performance by not
using oblivious transfer or converting to a complete binary
tree as in the original work [13], as shown in Figure 1.

C. Level-site Evaluation
We evaluated the PPDT by traversing down level-by-level,

where level-site l sends to level-site l +1 the encrypted index
i of the previous level-site. The client encrypts x and sends it
to level-site 0.

Consider l to be the level of the tree we are currently
considering and k to be the index of the current node at that
level. We say M (l)

k
is the blinded threshold comparison value

at level l at position k and nM (l)
k
o to be the encrypted blinded

threshold comparison value.

1https://github.com/renatopp/arff-datasets

We have to compute at each level-site l the quantity nM l
k
o=

nxi −T l
k
+ µlo. All these calculations are performed without

decryption by using additively homomorphic encryption since:
nM l

k
o = nxi −T l

k
+ µlo = nxio�n−T l

k
o�nµlo. We note that µl

is a random (t+ κ) bit mask computed at level-site l, where κ
is a security parameter [13]. In addition, nxio is the value of
an attribute of x matched with the attribute of T l

k
.

Both the client and the level site l utilize [20] to compare
categorical data or [13] to compare numerical data. We used a
label encoder so that we can use an encrypted equality check to
traverse a decision tree. The encrypted comparison protocols
require M l

k
and µl as inputs. At the end of the protocol, the

level-site l has δl and the client has δ′
l
, such that:

δl ⊕ δ
′

l =

{
Categorical 1{T l

k
≤ xi}

Numerical 1{T l
k
== xi}

Without the other corresponding bit, neither the level-site
l nor client knows the value of the inequality. To get around
this, the level-site l can additively blind δl with r

′ and send it
to the client to compute (δl + r

′) ⊕ δ′
l
. This output is returned

to level-site l, as level-site l knows r
′ , it can determine the

inequality output without revealing δl to the client. The output
of the inequality informs how to update the index k for level-
site l +1.
If the node at index k at level-site l is a leaf, level-

site l returns the encrypted classification to the client. We
summarize our approach in Algorithm 1.

Algorithm 1 PPDT Secure Inference Protocol with level-sites
1: next-index=0
2: Client sends x and next-index to level-site 0
3: for int l = 0; l < d; l ++ do
4: level-site l receives indexes and x
5: for int k = 0; k < l .NodeCount(); k ++ do
6: if Not in-scope based on next-index then
7: continue
8: else if in-scope and node i is a leaf then
9: return encrypted-classification to client
10: else
11: secure comparison w/ client and level-site l
12: next-index ← set index for next level-site
13: level-site l sends index and x to level-site l+1
14: break
15: end if
16: end for
17: end for

V. Security Analysis
We construct security proofs via simulation, reducing our

protocol to multi-party integer comparisons and homomorphic
encryption, and citing original proofs. Assuming an honest-
but-curious (HBC) adversary, we find that it can gather in-
formation on the PPDT through numerous queries. We then
discuss countermeasures. We conclude by demonstrating how

2024 IEEE International Performance, Computing, and Communications Conference (IPCCC)

Authorized licensed use limited to: New York University. Downloaded on April 04,2025 at 17:35:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. (a) Direct conversion of the Joye and Salehi PPDT [13] to the level-site approach. (b) Control flow in our PPDT implementation, and (c) Tree
Traversal. We emphasize Level 1 of the DT evaluation .

our PPDT is safeguarded against side-channel attacks and can
be upgraded for post-quantum security.

Our proofs use simulation. We consider a PPDT classi-
fication protocol, f (x,y), which we break into a two-party
protocol such that f (x,y) = f1(x,y), f2(x,y), and consider our
implementation, π, of the functionality. During the execution
of π, each of the two parties will generate a viewπ

i ,∀i ∈ {1,2}.
We claim our system is secure if we can show that there exist
two simulators, S1(1n,x, f1(x,y)) and S2(1n,y, f2(x.y)) that are
computationally equivalent to viewπ

1 (x,y,n) and viewπ
2 (x,y,n)

where n is a security parameter.

A. Security against an HBC client
We assume a HBC client who follows the protocol faithfully

but wishes to learn information about the tree node. To
demonstrate that this client does not learn anything more than
its view, we generate a simulator S1 that takes the input of the
client and simulates the output of a level-site.

If the level-site l is equal to zero, the simulator must sample
a value M0

0
R
←− Z∗p , and encrypt it to achieve nM0

0 o. This
number is computationally indistinguishable from any real
input that could be sent by a level-site given the properties
of additive homomorphic encryption as demonstrated in [25].
The client will then decrypt this number, resulting in M0

0 , and
define M ′0 = M0

0 and m′0 = M0
0 mod 2t . To simulate the integer

comparison protocol, it will then sample br
R
←− {0,1}. This

value will take the place of b0
2. As a result of the integer

comparison protocol, each output in this case is equally likely
to meet the standard of computational equivalence.

In the case that the level-site is greater than 0, we need to
perform more steps. First, the simulator sets j←− (b′0, · · · ,b

′
l−1)2,

according to the protocol. As before, the simulator samples
a value M l

k

R
←− Z∗p and follows the protocol by encrypting

a randomly sampled value to receive nM l
k
o, simulating the

response from the level-site. The next level-site is then passed
the encrypted client feature vector and the node index with
which to compare. This process repeats until the simulator
comes to a classification.

2In our practical implementation, we use integers or indexes instead of
bit strings that denote a path down the tree. However, this is functionally
equivalent.

This simulator simply performs the same steps as the client,
and randomly draws values to simulate the secret parameters
of the level-site. Given that the comparison protocol and
the additive homomorphic encryption scheme are statistically
indistinguishable from the random output [28], [29], [20], [25],
nothing about the internal state of the level-site is revealed
through these operations.

B. Security against an HBC level-site l
We assume the existence of HBC level-sites that wish to

learn the client’s private input vector x. We construct a sim-
ulator that produces output computationally indistinguishable
from a legitimate run of the system.
The simulation begins when the simulator sets xi = 0,∀xi ∈

x, generates a key pair (pk,sk) and encrypts the xi’s. The sim-
ulator then runs the protocol from the level-site by generating
µl , σl , k, s, etc., and generates nM l

k
o. Then it generates j by

randomly selecting bits (b′0, · · · ,b
′
l−1)2. The simulator then goes

through the comparison portion of the protocol. The level-site
l passes on nb0, · · · ,blo and the encrypted feature vector to
level-site l +1.
Simply, the simulator runs the level-site’s protocol and

encrypts the value 0 for xi,∀xi ∈ feature vector x. It then steps
through the protocol and, due to the encrypted integer compar-
ison protocol, does not learn any information about the value
of xi . This makes it computationally indistinguishable from a
real run of the system. Level-site l uses the previous results of
the tree-traversal for the previous level-sites, 0, · · · ,l − 1 the
required xi’s for the current level l the thresholds for the
current level l. Only the client knows the feature vector x
and its classification. Thus, the level-site does not learn any
relevant information from the client.

C. Client Timing Attack and Performance Tradeoffs
Over numerous runs, the client can begin to estimate the

thresholds stored in different nodes by observing different
feature vectors and classification results. An easy remediation
is to throttle the client, as is done by other PPDT models [18].
However, the client can determine the level on which the class
is on using the amount of time that a classification takes. This
attack can be mitigated by utilizing a proxy between the client
and level-sites that adds random waiting times to the query

2024 IEEE International Performance, Computing, and Communications Conference (IPCCC)

Authorized licensed use limited to: New York University. Downloaded on April 04,2025 at 17:35:29 UTC from IEEE Xplore. Restrictions apply.

result. The minimum extra time needed would be between
0.5 and 1 seconds to make it indistinguishable between two
adjacent level-sites, as shown in Table II. Throttling would not
severely affect the average run-time compared to the original
Joye and Salehi PPDT protocol [13].

D. Security against Side Channel Attacks
Side channel attacks are possible on multiple cryptosystems

such as RSA [3]. We use Joye and Salehi’s [13] comparison
protocol for comparing numerical attributes, which is tim-
ing attack resistant on each level-site. For categorical data
comparison, we used a modified Protocol 1 EQT-1 [20] that
always runs the same computations, which also makes it
resistant to timing attacks. As both comparison protocols also
have a similar run-time, the overall system has timing attack
protection. Thus, the computation time between all the level-
sites will be indistinguishable. If a classification finishes early,
we can send a bogus value downstream to ensure that all level-
sites complete a computation.

We use containerization to ensure stronger mitigations
against power-based side-channel attacks. Containers are im-
mutable after being created [1], making it difficult to install
software to analyze the runtime environment. Since containers
are usually the end result of an automated deployment pipeline,
consistent replacement of keys at level-sites [14] would also be
a mitigation. More, a data owner could split the level-sites to
be managed by multiple non-colluding cloud providers, which
would make obtaining power readings to derive the private key
much more difficult.

VI. Experimental Results
A. Experiment Setup

We implemented and tested the proposed approach us-
ing Amazon Elastic Kubernetes Service (EKS). We used
t2.medium EC2 instances, which have 2 vCPUs and 4 GB
of RAM. Our open source code implementation3 used the
homomorphic encryption library implemented in Java [24] that
implements Joye and Salehi’s encrypted integer protocol [13]
and Veugen’s encrypted equality comparison [20].

We used Docker containers and Kubernetes as it allows the
creation of replicas [10] and supports horizontal scaling [23],
which fits our availability requirements in Section IV-A. We
considered two EC2 VMs in the same region but in a different
availability zone to simulate using two non-colluding cloud
providers.

B. Performance Results
For our experiments, we ran our PPDT with each container

storing a level-site. When obtaining our results, we did not
implement throttling based on the discussion in Section V-C,
as we wanted to have a consistent view on how much time was
needed for the PPDT evaluation at each level-site. We ran the
evaluation 10 times each and provided the average execution
time. The client experienced on average a 25-millisecond

3https://github.com/adwise-fiu/Level-Site-PPDT

transmission delay for each connection, which is considered
in the results. We also report the estimated time that Joye
and Salehi PPDT would take by computing an evaluation that
would traverse the d levels of the PPDT.
Our solution agrees 100% with a standard DT classification.

Setting up the level-sites was completed in less than a second
for all datasets. The performance results of our approach
compared to Joye and Salehi are reported in Table II. Our
superior performance is due to not requiring a complete binary
tree [13], reducing the evaluation depth and the number of
encrypted comparisons.

TABLE II
Comparing classification time of our approach with Joye and Salehi

Approach under hypothyroid and nursery datasets.

Levels Hypothyroid
level-sites

Hypothyroid
Joye & Salehi

Nursery
level-sites

Nursery
Joye & Salehi

2 0.807 s 3.279 s 0.656 s 4.140 s
4 1.772 s 3.279 s 2.041 s 4.140 s
9 4.148 s 3.279 s 2.950 s 4.140 s
12 N/A N/A 5.648 s 4.140 s

Based on Table I, the average depth for the Hypothyroid set
is 2.78 which corresponds to a value between 0.807 and 1.772
secs in Table II. This is significantly faster than the Joye and
Salehi approach. Similarly, the average depth for Nursery data
is 5.99 which corresponds to a value between 2.041 and 2.950
seconds, again much less than 4.140 of Joye and Salehi.

C. Comparison with other Related Work
We compared our approach with Li et al. [18] and when

repeating the same client queries it takes our PPDT 2.041,
6.198 and 15.878 seconds for the nursery, breast cancer and
spambase dataset, respectively, which is at least 33% faster.
Compared to Yuan et al. [32] using the spambase dataset,
which they reported for evaluations. As shown in Table III,
our method is faster at almost all levels due to Yuan et al.’s
need to encrypt data for each evaluation and the computational
overhead of traversing the PPD-GBDT.

TABLE III
Comparing the classification time of [32] with our approach using

Spambase dataset.

Levels Our Approach Yuan et al.[32]
2 1.927 s 0.49 s
3 2.736 s 7.58 s
4 3.937 s 8.35 s
5 4.638 s 17.33 s
6 5.783 s 19.37 s

VII. Conclusion
In this paper, we present a new secure decision tree in-

ference protocol by splitting the DT model into level-site
constructs. Our PPDT exhibits optimal performance in sparse
trees [12][15] due to fewer encrypted integer comparisons,
resulting in faster performance compared to other PPDTs
[18][32][13]. In addition, it offers resistance to timing attacks
through timing attack resistant comparison protocols [13][20].
Our PPDT also offers strong mitigations against power-based
side channel attacks [3], as we use containers that offer power-
based side channel protections [1], key replacement [14], and

2024 IEEE International Performance, Computing, and Communications Conference (IPCCC)

Authorized licensed use limited to: New York University. Downloaded on April 04,2025 at 17:35:29 UTC from IEEE Xplore. Restrictions apply.

our approach can be used to split our PPDT with two non-
colluding cloud providers. Finally, our PPDT protocols allow
us to support load balancing to more evenly distribute more
computing resources to higher levels of the PPDT, which
would experience more usage and redundancy [10] in case
a level-site experiences an outage.

Acknowledgements
We would like to thank Prof. Dimitrios Hristu-Varsakelis

for helping at the initial stages of the paper by mak-
ing suggestions. This work is supported by NOVA LINCS
ref. UIDB/04516/2020 (https://doi.org/10.54499/UIDB/04516/
2020) and ref. UIDP/04516/2020 (https://doi.org/10.54499/
UIDP/04516/2020) with the financial support of FCT.IP.

References
[1] NIST Special Publication 800-190. Application Container Security

Guide. https://csrc.nist.gov/pubs/sp/800/190/final, September 2017. [On-
line; accessed 29-December-2023].

[2] Furkan Aydin, Emre Karabulut, Seetal Potluri, Erdem Alkim, and
Aydin Aysu. Reveal: Single-trace side-channel leakage of the seal
homomorphic encryption library. In 2022 Design, Automation & Test
in Europe Conference & Exhibition (DATE), pages 1527–1532. IEEE,
2022.

[3] Alessandro Barenghi, Diego Carrera, Silvia Mella, Andrea Pace, Gerardo
Pelosi, and Ruggero Susella. Profiled side channel attacks against the
rsa cryptosystem using neural networks. Journal of Information Security
and Applications, 66:103122, 2022.

[4] Raphael Bost, Raluca Popa, Stephen Tu, and Shafi Goldwasser. Machine
learning classification over encrypted data. In Network and Distributed
System Security Symposium (NDSS 2015). The Internet Society, 01 2015.

[5] Christa Cody, Vitaly Ford, and Ambareen Siraj. Decision tree learning
for fraud detection in consumer energy consumption. In 2015 IEEE
14th International Conference on Machine Learning and Applications
(ICMLA), pages 1175–1179, 2015.

[6] Ivan Damgrd, Martin Geisler, and Mikkel Krigaard. Efficient and
secure comparison for on-line auctions. In Australasian conference on
information security and privacy, pages 416–430. Springer, 2007.

[7] Ivan Damgrd, Martin Geisler, and Mikkel Krigaard. Homomorphic
encryption and secure comparison. International Journal of Applied
Cryptography, 1(1):22–31, 2008.

[8] Ivan Damgård, Martin Geisler, and Mikkel Kroigard. A correction to
’efficient and secure comparison for on-line auctions’. International
Journal of Applied Cryptography, 1(4):323–324, 2009.

[9] Fatih Emekçi, Ozgur Sahin, Divyakant Agrawal, and Amr Abbadi.
Privacy preserving decision tree learning over multiple parties. Data
and Knowledge Engineering, 63:348–361, 11 2007.

[10] Michael Hausenblas. Kubernetes Replicas: Underap-
preciated Workhorses. https://www.redhat.com/en/blog/
kubernetes-replicas-appreciated-workhorses, July 25, 2017. [Online;
accessed 29-December-2023].

[11] Health and Human Services. Health insurance portability and ac-
countability act. https://www.hhs.gov/hipaa/for-professionals/security/
laws-regulations/index.html, 1996.

[12] Xiyang Hu, Cynthia Rudin, and Margo Seltzer. Optimal sparse decision
trees. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 32, pages 7265–7273. Curran Associates,
Inc., 2019.

[16] Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. In
Mihir Bellare, editor, Advances in Cryptology - CRYPTO 2000, pages
36–54, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

[13] Marc Joye and Fariborz Salehi. Private yet efficient decision tree
evaluation. In Proceedings of DBSec 2018, pages 243–259, 07 2018.

[14] Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. In-
troduction to differential power analysis. Journal of Cryptographic
Engineering, 1:5–27, 2011.

[15] Jimmy Lin, Chudi Zhong, Diane Hu, Cynthia Rudin, and Margo Seltzer.
Generalized and scalable optimal sparse decision trees. In International
Conference on Machine Learning, pages 6150–6160. PMLR, 2020.

[17] Yehuda Lindell and Benny Pinkas. Secure multiparty computation for
privacy-preserving data mining. Journal of Privacy and Confidentiality,
1:197, 11 2008.

[18] Lin Liu, Rongmao Chen, Ximeng Liu, Jinshu Su, and Linbo Qiao. To-
wards practical privacy-preserving decision tree training and evaluation
in the cloud. IEEE Transactions on Information Forensics and Security,
15:2914–2929, 2020.

[19] Hefeng Mo, Ting Tao, Wenbin Gao, Chunlei Fan, Ligang Wang, Xin
Zhao, and Haili Wang. Application of decision tree algorithm in medical
nursing and health assessment system. In 2023 3rd Asia-Pacific Confer-
ence on Communications Technology and Computer Science (ACCTCS),
pages 55–59, 2023.

[20] Majid Nateghizad, Thijs Veugen, Zekeriya Erkin, and Reginald L
Lagendijk. Secure equality testing protocols in the two-party setting.
In Proceedings of the 13th International Conference on Availability,
Reliability and Security, pages 1–10, 2018.

[21] Pascal Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In Advances in Cryptology—EUROCRYPT’99: In-
ternational Conference on the Theory and Application of Cryptographic
Techniques Prague, Czech Republic, May 2–6, 1999 Proceedings 18,
pages 223–238. Springer, 1999.

[22] European Parliament and Council of the European Union. General data
protection regulation. https://gdpr.eu/, 2019.

[23] Bjørn Erik Pedersen. Horizontal Pod Autoscaling. https://kubernetes.
io/docs/tasks/run-application/horizontal-pod-autoscale/, May 5, 2018.
[Online; accessed 29-December-2023].

[24] Andrew Quijano and Kemal Akkaya. Server-side fingerprint-based
indoor localization using encrypted sorting. In 2019 IEEE 16th Inter-
national Conference on Mobile Ad Hoc and Sensor Systems Workshops
(MASSW), pages 53–57, Monterrey, CA, 2019. IEEE.

[25] Rivest RL, Adleman LM, and Dertouzos ML. On data banks and privacy
homomorphisms. Foundations of Secure Computation, 4:169–179, 01
1978.

[26] Raymond Tai, Jack Ma, Yongjun Zhao, and Sherman Chow. Privacy-
preserving decision trees evaluation via linear functions. In Computer
Security - ESORICS 2017, Part II, LNCS vol. 10493, pages 494–512.
Springer, 09 2017.

[27] Stacey Truex, Ling Liu, Mehmet Gursoy, and Lei Yu. Privacy-preserving
inductive learning with decision trees. In 6th International Congress on
Big Data, pages 57–64, 06 2017.

[28] Thijs Veugen. Improving the dgk comparison protocol. In WIFS 2012 -
Proceedings of the 2012 IEEE International Workshop on Information
Forensics and Security, pages 49–54, 12 2012.

[29] Thijs Veugen. Correction to "improving the dgk comparison protocol".
Cryptology ePrint Archive, 2018.

[30] Wang Yanxia. Student information management decision system based
on decision tree classification algorithm. In 2022 IEEE 5th International
Conference on Information Systems and Computer Aided Education
(ICISCAE), pages 827–831, 2022.

[31] Andrew C. Yao. Protocols for secure computations. In 23rd Annual
Symposium on Foundations of Computer Science (sfcs 1982), pages 160–
164. IEEE, 1982.

[32] Shuai Yuan, Hongwei Li, Xinyuan Qian, Meng Hao, Yixiao Zhai,
and Xiaolong Cui. Toward efficient and end-to-end privacy-preserving
distributed gradient boosting decision trees. In ICC 2023-IEEE Interna-

tional Conference on Communications, pages 1566–1571. IEEE, 2023.

2024 IEEE International Performance, Computing, and Communications Conference (IPCCC)

Authorized licensed use limited to: New York University. Downloaded on April 04,2025 at 17:35:29 UTC from IEEE Xplore. Restrictions apply.

