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Abstract—GPS signals, the main origin of navigation, are
not functional in indoor environments. Therefore, Wi-Fi access
points have started to be increasingly used for localization and
tracking inside the buildings by relying on fingerprint-based
approach. However, with these types of approaches, several
concerns regarding the privacy of the users have arisen. Malicious
individuals can determine a clients daily habits and activities by
simply analyzing their wireless signals. While there are already
efforts to incorporate privacy to the existing fingerprint-based
approaches, they are limited to the characteristics of the homo-
morphic cryptographic schemes they employed. In this paper,
we propose to enhance the performance of these approaches
by exploiting another homomorphic algorithm, namely DGK,
with its unique encrypted sorting capability and thus pushing
most of the computations to the server side. We developed an
Android app and tested our system within a Columbia University
dormitory. Compared to existing systems, the results indicated
that more power savings can be achieved at the client side
and DGK can be a viable option with more powerful server
computation capabilities.

Index Terms—Efficiency, fingerprinting, localization, privacy,
Wi-Fi, homomorphic encryption, socialist millionaire problem

I. INTRODUCTION

While GPS has been revolutionary in its ability to easily

locate a person outdoors accurately and provide directions to

travel to their desired destination, it is not as useful to localize

users indoors as it was not designed for that niche. There are

various technologies that can overcome the shortcomings of

GPS for indoor localization such as taking advantage of Wi-

Fi Access Points (APs), sensors and RFID devices [1]. One of

such promising technologies is based on fingerprinting concept

where Wi-Fi signal strengths (i.e., Received Signal Strength

(RSS)) on a floor of a building are pre-collected and shortest

distances to those RSS values are computed to determine a

user’s location [2]. The pre-collection phase is called training

and required before the localization can be done.

While there has been an extensive amount of research

conducted to improve the performance and granularity of

indoor localization, user privacy is usually not the first priority.

Nevertheless, there is a growing concern among users that

either malicious individuals or large enterprises such as Google

use indoor localization systems to compromise their privacy

[3]. Since smart phones are ubiquitous, it is conceivable that a

malicious individual can collect their victim’s MAC Address

and data such as RSS to track the daily habits of their target

when fingerprint-based approaches are used.

To address this growing concern, a number of solutions have

been proposed in the literature [4]. The main objective is to

either hide the identity of the user or prevent the AP/server

from easily viewing the user’s data. In case of fingerprint-

based solutions, the approach was to hide the RSS data of

user devices from the server by employing cryptographic

techniques such as homomorphic encryption which enables

computation on the encrypted data. In these approaches, the

RSS values are encrypted before they are sent to a cloud server

and the computations at the server is done on the encrypted

data.

Recent approaches, utilized partially homomorphic systems

to ensure privacy [5]–[7]. Typically, Paillier-based systems [8]

are used to compute the distances and send them back to the

user device in the encrypted form where they were decrypted

to find out the minimum. This is needed because even though

the distances can be computed and obtained in the encrypted

form, they cannot be compared to each other or sorted in a

list as Paillier cannot provide such a feature.

In this paper, we propose to extend the Paillier-based

approaches by designing an alternative system where the

computations for sorting the encrypted values are outsourced

to the server rather than the client. This stems from the

motivation that the server would have lots of computational

power and through such outsourcing the client device can

save more energy. To this end, we adopted the homomor-

phic [9] algorithm which has the capability to compare two

encrypted values named after the authors Damgård, Geisler

and Krøigaard (DGK). Basically, we introduce an encrypted

sorting mechanism at the server and relay only the top result(s)

(i.e., k minimum values) to the client.

We implemented an Android app that uses both systems

which can localize users in the third floor of the Broadway

dormitory at Columbia University. For comparison, we im-

plemented a Java package containing the DGK and Paillier

homomorphic encryption systems both at the client and server

sides and studied the performance trade-offs. The results

indicated that while DGK is faster than Paillier in both a client

or server localization approach. In addition, our hypothesis

of outsourcing the encrypted comparison in our server side

localization approach increased computation time but we used

less battery after repeated testing.

The structure of this paper is as follows. In the next

section, we summarize the related work. Section III describes
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the background which include fingerprint-based localization,

homomorphic encryption and its applications in our system.

Section V provides a comprehensive performance evaluation

of both the client and server-based indoor localization system.

Finally, Section VI concludes the paper.

II. RELATED WORKS

There has been a number of fingerprint-based approaches in

the literature. For instance, Ahmad et al. follow an approach

in the sense that all localization data is to be stored on the

individual device rather than a centralized remote server [10].

Their model uses a Wi-Fi fingerprint database to localize a

user and their system can dynamically update itself as the

phone is consistently collecting data. It has been proven to be

as accurate as traditional centralized fingerprint databases as it

also passive collects beacon-stuffing information from APs as

well. Beacon stuffing releases information to the phone such

as Region ID, Location Number, AP ID, and AP fingerprint

that is recorded at its location [10]. This system provides

essentially perfect security to the user, assuming the phone

is not compromised. Yet, there is a danger to the network

administrator as the APs leak valuable information that could

be useful of a malicious individual’s reconnaissance phase

in order to attempt to hack the network. Therefore, it is

likely that network administrators would probably disable this

information being leaked.

Zhu et al. have created an indoor localization system using

a differentially private algorithm designed to both protect

the fingerprint database and the user’s data [11]. A common

definition of differentially private is when looking at the output

of the algorithm, a third party cannot distinguish any uniquely

identifiable data was included in the original dataset or not.

Therefore, they used the exponential mechanism on their

dataset to conceal the identifiable attributes. Finally they used

the J48 Decision tree classifier and showed that their system

is still about 90% accurate in localizing via Wi-Fi fingerprint

data. Zhu et al. mention that they tested their indoor location

system only on synthetic data. Therefore, there is a possibility

that it may have a reduced accuracy when it is tested indoors.

Also, there is no discussion on the computational overhead

for the process of creating a differentially private system

when it comes mobile devices to localize with the assistance

of a fingerprint database server. While mobile phones have

improved dramatically in their computational power, they

will consistently have less computational resources or battery

lifetime than a laptop.

In this work, we improve the work in [7]. In this work, the

Paillier system has been used to perform encrypted compu-

tations and send them back to the client. We will revise this

approach to utilize DGK [9] which is a homomorphic system

with encrypted computing and comparing capabilities and thus

push the burden to the server side.

III. BACKGROUND

A. Fingerprint-based Localization

The idea behind indoor localization using fingerprints is

based on the signals collected from APs for each user.

Specifically, a user receives Wi-Fi signals from various APs

at a specific location, which is referred to as a fingerprint,

and these are stored in a database. At every location, this

signal collection is done for a given area. The way these

locations are picked is based on the expected accuracy of

the localization. The higher the resolution of this process, the

better the accuracy will be. To increase the accuracy, crowd

sourcing can be used with some incentives. Once all location

fingerprints are stored in a database, this information can now

be used to determine the location of a user moving around.

This phase of collecting fingerprints is called training as shown

in Fig. 1.

Fig. 1: Crowd sourcing-based training model [7].

After the training phase, the actual localization occurs when

a user receives signals from an AP and then this signal is used

to find out a similar signal in the database. Essentially, the clos-

est signal which corresponds to a specific point in the database

will be found. This process is achieved through a similarity

distance computation. There may be different approaches to

determine the closest distance. One simple approach is to find

the single fingerprint while another approach might find k
closest fingerprints and take the centroid of these fingerprints

[7].

B. Homomorphic Encryption

Homomorphic encryption enables computation on en-

crypted numbers so as to ensure privacy of the actual num-

bers. While most of the homomorphic systems are partial

(i.e., they only support two arithmetic operations), recent

years witnessed fully homomorphic systems that support all

arithmetic operations [12]. In this paper, we utilized the

well-known Paillier [8] algorithm and DGK algorithm [13]

which are partially homomorphic systems. Specifically, these

homomorphic encryption schemes share the following two

traits which permit for computation on encrypted values. Let

E(x) and E(y) be encrypted x and y respectively. Under

homomorphic encryption E(x)E(y) = E(x + y). Also, they both

support scalar multiplication: If we have E(x) and plain-text

y, we can compute E(xy) by E(x)y .
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DGK has also the benefit of supporting a built-in compari-

son protocol for comparing encrypted numbers. This protocol

is one solution to the ”socialist millionaire’s” problem, where

the objective is to generate a true inequality without decrypting

the cipher-texts [14]. Veugen [9] describes Protocol 2 and

Protocol 4 in his work to compare encrypted numbers. When

using Protocol 4 to compare DGK values, it reliably computes

[[x > y]]. The main benefit of Protocol 4 is that the constraints

enforced on the plain-text space is much smaller, allowing

for successful and secure comparisons with DGK encrypted

values.

C. Privacy in Fingerprint-based Localization

One of the issues raised in fingerprinting is privacy. This

occurs because the fingerprints collected from a user device

are exposed to the server which stores all the fingerprints.

Consequently, these fingerprints could be used to determine

the locations of a specific user and track him/her during the

day. To address this issue, our previous work in [7] proposed

employing a partial homomorphic system based on Paillier.

This approach encrypts the fingerprints and when computing

the closest distance at the server, it performs encrypted compu-

tation and eventually sends the encrypted results to the client

to decrypt and compute the closest one.

IV. DGK-BASED FINGERPRINT LOCALIZATION

In this section, we describe our proposed approach for

fingerprint-based localization in details.

A. Overview

Similar to the works in the literature such as [7], our

approach utilizes homomorphic encryption when collecting

data from users and doing computation at the database server.

However, as previous works utilized homomorphic systems

such as Paillier which cannot do comparison of encrypted

numbers, the computed distance results at the server were

being passed back to the client which can then decrypt

these results and can find the closest distance. This requires

communication of all of these values as well as decryption

overhead at the client. In this paper, we propose to eliminate

this overhead by utilizing a comparison protocol based on

DGK and hence conduct comparison of encrypted distances

at the server. The DGK comparison protocol helps us to

determine the closest distance to user’s fingerprint and then we

communicate only that encrypted value to the user. We explain

the details of this approach in the balance of this section.

B. Training Phase of the Proposed Approach

We implemented a smart phone app that follows our pro-

posed fingerprint-based approach. This smart phone app was

started to be tested at Florida International University (FIU)

Engineering Center but once the REU student left the program,

it continued at his dormitory at Columbia University.

The fingerprint-based application first requires fingerprints

(training data) stored in a remote server that is accessible by

the client’s device via Wi-Fi or LTE. In our case, the server

uses a MySQL database to store the fingerprints and utilizes

the JDBC driver to retrieve data from the database and obtain

a floor map of Broadway dormitory third floor. The database

contains a table with the following columns:

1) Map ID

2) Location on the map

3) MAC-address of an AP

4) RSS value associated with the AP

5) Device manufacturer, model, and software version

6) Date and time

The Android app has a training activity which allows users

to collect and store the fingerprints to the remote database as

shown in Fig. 1. A user does this by going to the location

where s/he wants to fingerprint and by tapping the screen on

the matching location in the floor map. The app will collect

the coordinates, APs detected and their corresponding RSS.

Upon completion, a blue ”X” appears informing the user the

location is recorded in the finger database.

We conducted our scans with a range of about 5 - 10 feet

apart from each other to give a precise location. Whenever

possible, we would conduct scans within rooms with closed

doors as to give a more distinct signature. As a result, we

obtained a fingerprint database as follows:

D = 〈(xi, yi) , Vi = {RSSj , APj}NAP

j=1 〉NF
i=1

where (xi, yi) is the location of the fingerprint, Vi is the

fingerprint tuple comprised of APi and its fingerprint RSS

value. NAP is the total number of fingerprint reading scan

result APs for a location and NF is the total number of

fingerprints in the database.

C. Fingerprint Database pre-processing

Once the database has sufficient fingerprints, it needs to

pre-process the training data to create look up tables. This is

because not all the locations will see the same APs and some

AP signal values might be empty in the database.

Basically, if the AP is not found in the database, we use vc =

-120 to automatically setup the missed constant determined by

Parmengol et al. [7]. When completed, the look up tables will

list all X,Y coordinates and their signal values for each AP’s

MAC address. Upon completion of the pre-processing phase,

the remote server will be capable of securing localizing a user.

D. Homomorphic Distance Computation

The localization scheme works by computing the Euclidean

distance of the user’s (AP,RSS) pairs to each row on the

look up table to generate NF rows of distance and coordinate

pairs.

More specifically, a client first conducts a localization scan

and obtains a list of (AP , RSS) pairs. The client then obtains

the columns in the look up table.The client organizes their scan

results correspond with the columns of the server look up table.

Then, the client sends the normalized (AP , RSS) pairs and

the public key to the server. To ensure privacy is preserved,

the RSS data is encrypted via homomorphic encryption.

In summary, the algorithm computes the distance squared

using homomorphic encryption. It exploits the fact that d2 =
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(x2−x1)
2 = (x2

2)+(−2x1)(x2)+(x2
1). Here x2 is the server’s

fingerprint RSS data and x1 is the localization scan RSS. The

terms S1, S2, and S3 correspond to the terms in parenthesis

respectively. The pseudo-code for this computation is given in

Algorithm 1.

Algorithm 1 MCA Distance Computation

1: L ← gatherLookupTableData()
2: scanAPs ← APs found in Localization Scan
3: for each fprint = ((xi, yi), Vi) in L do
4: Si,1 ← 0

5: for each AP in scanAPs do
6: if fprint contains AP then
7: Si,1+ = RSS2

i,j

8: [[Si,2]] += [[S2,j ]]
RSSi,j

9: else
10: Si,1+ = (vc)

2

11: [[Si,2]] += [[S2,j ]]
vc

12: end if
13: end for
14: [[Si,1]]← encrypt(Si,1)
15: [[di]]← [[Si,1]] + [[Si,2]] + [[S3]]
16: result ← (xi, yi), di
17: add result to resultList
18: end for
19: return resultList

As seen, this algorithm returns a list (i.e., resultList)
which basically includes all distance computations to client’s

fingerprint x1. All the elements of this list is encrypted. We

followed both Paillier and DGK to perform this operation as

they both support partial homomorphism.

E. Server-based Minimum Distance Computation

We propose to use DGK algorithm for processing the

resultList instead of passing it back to the client. Since DGK

has the ability to compare encrypted numbers, the algorithm

will compare all the elements and determine the top k of these.

In our case, we followed an approach which computes the

closest distance (i.e., top candidate) to a given fingerprint and

reports it back to client.

To obtain the k smallest encrypted numbers, we used Bubble

sort as our template as shown in Algorithm 2 and modified

it to fit our needs. First, we modified line 2 to loop only

k times and we changed the condition to check if arr[i] <
arr[i + 1]. Upon running this protocol, the smallest values are

located in ascending order ranging from arr[n - 1], arr[n - 2],

..., arr[length - 1 - (k - 1)]. The main benefit of using this

system over sorting the encrypted array is that its overhead

is O(nk) rather than O(n2) to sort the whole encrypted array.

Considering that Protocol 4 can take about 0.3 - 0.5 seconds

[9] for one execution, it is imperative we minimize the number

of comparisons.

Using Algorithm 2, where k = 1, we obtain the smallest

encrypted distance. The server then returns the corresponding

Algorithm 2 Integrating Protocol 4 and Bubble Sort

1: n ← arr.length

2: for i = 0 to k do
3: for j = 0 to n - i - 1 do
4: if Protocol4(arr[j], arr[j + 1]) == 0 then
5: Cipher-text temp = arr[j]

6: arr[j] = arr[j+1]

7: arr[j + 1] = temp

8: end if
9: end for

10: end for

encrypted coordinates to the client. This overall process is

summarized in Fig. 2.

Fig. 2: Overall process for server-based fingerprinting local-

ization. The use of brackets [[v]] on the value v denotes that

the it is encrypted.

V. PERFORMANCE EVALUATION

In this section, we discuss the results of our experiments to

test the performance of both our proposed approach.

A. Experiment Setup

We have implemented Paillier and DGK in Java using

the standard BigInteger library, using the author’s paper as

reference. Also, we used a remote server which is a Desktop

computer with an Intel 64-bit i7-4790K CPU running at 4 GHz

with 24 GB of RAM. We have used the Samsung Galaxy 6S

Edge which has a 8 core CPU running at 2.1GHz and 4 GB

of RAM for both training and testing the performance of both

localization systems.

We created 19 fingerprints in our training data, in which

we detected 265 APs. We had filtered 90% of the APs so

our column only consisted of 26 APs that were detected 8

- 13 times. We conducted 20 different trials for 2048 bits

key lengths and we have kept track of how much battery was

consumed upon completion.

B. Performance Metrics and Baselines

We considered the following metrics to access performance:

• Execution Time: This is the time for all computations and

communication between the user and server.
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• Battery Life: This is defined as the energy consumption

for the user device’s battery.

For comparison, we compared our server-side localization

approach1 with Parmengol et al.’s [7] client-side approach.

For both approaches, we had the client send either DGK or

Paillier encrypted distances. Therefore, our implementation of

the comparison protocol can compare both Paillier and DGK

cipher-text 2. In both cases, we used 2048 bits of key sizes as

1024 bits is not considered secure enough anymore.

C. Performance Results

We first checked the execution time results. Based on our

results in Table I, we have observed an expected increase in

time with the server-side approach. For instance, the client-side

with Paillier took 11.13 seconds while it was 16.65 seconds

in our DGK approach. However, we observed that DGK

localization is much faster overall because DGK encryption

and decryption operations are much faster compared to Paillier.

TABLE I: Overhead of both approaches with 2048-bit keys

Approach Time (Paillier) Time (DGK) Energy (Paillier/DGK)
Client Side 11.13 6.71 4%
Server Side 27.93 16.65 3%

We then looked at the energy consumption for both cases.

Note that using Paillier or DGK did not matter for client

or server sides for energy consumption. Upon completion of

our tests, the client system used about 4% of the phone’s

battery and our system has used 3% battery. This is because

when analyzing Veugen’s comparison protocol, the server is

executing most of the computations, which was our objective.

So if this localization computations are repeated many times,

for instance, as part of a tracking app, then our server-based

approach would be standing out for saving significant battery

power. In other words, we can safely say that if we had

repeated until the battery ran out, we would have completed

more localizations using our model. This would be especially

useful if the user highly valued their battery life over time

to locate themselves such as a disaster scenario. In summary,

DGK can be a viable option whether it is used in a client-

based or server-based approach for privacy preserving indoor

localization due to its speed and our server-side approach has

energy saving features.

VI. CONCLUSION

In this paper, we introduced a server-based fingerprint based

localization scheme using DGK homomorphic encryption sys-

tem. The goal was to push the comparison of encrypted

distance values to the server so that the client can save energy

and transmission time due to transmission of those values back

to client in the existing approaches. We developed an Android

1The code for the Indoor Localization Android app and server are located
at: https://github.com/AndrewQuijano/SSTREU2017

2We have made our implementations of all the homomorphic
encryption systems and their protocols publicly available at:
https://github.com/AndrewQuijano/Homomorphic Encryption

app for indoor localization to test the proposed approach in

student dormitories. Our results demonstrated that our system

based on DGK can save battery life of the mobile device, while

still preserving user privacy with a slight increase in execution

time. However, we also found out that if implemented at

the client-side, DGK can significantly outperform the existing

approach with Paillier in terms of execution time.
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